Lists (1)
Sort Name ascending (A-Z)
Stars
VLM-RL: A Unified Vision Language Models and Reinforcement Learning Framework for Safe Autonomous Driving
OpenEMMA, a permissively licensed open source "reproduction" of Waymo’s EMMA model.
😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 | 适配 QQ / 微信(企业、个人微信)/ 飞书 / 钉钉 / Discord / Telegram 等消息平台 | 支持 OpenAI GPT、ChatGPT、DeepSeek、Dify、Claude、Gemini、Ollama、LM Studio、SiliconFlow、Qwen、Moonshot、ChatGLM 等 …
DeepSeek Coder: Let the Code Write Itself
国内首个占据栅格网络全栈课程《从BEV到Occupancy Network,算法原理与工程实践》,包含端侧部署。Surrounding Semantic Occupancy Perception Course for Autonomous Driving (docs, ppt and source code) 在线课程主页:http://111.229.117.200:8100/ (作者独立搭建)
Simple and Easy simulator YOLO Object Detection with Bird's Eye View
awesome-autonomous-driving
[ICCV 2023] VAD: Vectorized Scene Representation for Efficient Autonomous Driving
[CVPR 2023 Best Paper Award] Planning-oriented Autonomous Driving
自动驾驶笔记,以解析各模块知识点、整合行业优秀解决方案进行阐述,以帮助自己及有需要的读者;包含深度学习、deeplearning、无人驾驶、BEV、Transformer、ADAS、CVPR、特斯拉AI DAY、大模型、chatgpt等内容.
LLM API 管理 & 分发系统,支持 OpenAI、Azure、Anthropic Claude、Google Gemini、DeepSeek、字节豆包、ChatGLM、文心一言、讯飞星火、通义千问、360 智脑、腾讯混元等主流模型,统一 API 适配,可用于 key 管理与二次分发。单可执行文件,提供 Docker 镜像,一键部署,开箱即用。LLM API management & k…
面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系scutjy2015@163.com 版权所有,违权必究 Tan 2018.06
【三年面试五年模拟】AI算法工程师面试秘籍。涵盖AIGC、传统深度学习、自动驾驶、机器学习、计算机视觉、自然语言处理、强化学习、具身智能、元宇宙、AGI等AI行业面试笔试经验与干货知识。
A collection of loss functions for medical image segmentation
Effortless data labeling with AI support from Segment Anything and other awesome models.
[IEEE T-PAMI 2023] Awesome BEV perception research and cookbook for all level audience in autonomous diriving
This repo contains the projects: 'Virtual Normal', 'DiverseDepth', and '3D Scene Shape'. They aim to solve the monocular depth estimation, 3D scene reconstruction from single image problems.
[ECCV2024 - Oral, Best Paper Award Candidate] SEA-RAFT: Simple, Efficient, Accurate RAFT for Optical Flow
[3DV 2025] Code for "FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent" by Cameron Smith*, David Charatan*, Ayush Tewari, and Vincent Sitzmann
[ICCV'23] Official implementation of CRN: Camera Radar Net for Accurate, Robust, Efficient 3D Perception
An ultimately comprehensive paper list of Vision Transformer/Attention, including papers, codes, and related websites
OccSora: 4D Occupancy Generation Models as World Simulators for Autonomous Driving
[Information Fusion 2025] A Survey on Occupancy Perception for Autonomous Driving: The Information Fusion Perspective