forked from mesolitica/NLP-Models-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
import numpy as np | ||
import librosa | ||
import os | ||
import scipy | ||
import json | ||
|
||
|
||
def change_pitch_speech(samples): | ||
y_pitch_speed = samples.copy() | ||
length_change = np.random.uniform(low = 0.8, high = 1) | ||
speed_fac = 1.0 / length_change | ||
tmp = np.interp( | ||
np.arange(0, len(y_pitch_speed), speed_fac), | ||
np.arange(0, len(y_pitch_speed)), | ||
y_pitch_speed, | ||
) | ||
minlen = min(y_pitch_speed.shape[0], tmp.shape[0]) | ||
y_pitch_speed *= 0 | ||
y_pitch_speed[0:minlen] = tmp[0:minlen] | ||
return y_pitch_speed | ||
|
||
|
||
def change_amplitude(samples): | ||
y_aug = samples.copy() | ||
dyn_change = np.random.uniform(low = 1.5, high = 3) | ||
return y_aug * dyn_change | ||
|
||
|
||
def add_noise(samples): | ||
y_noise = samples.copy() | ||
noise_amp = 0.01 * np.random.uniform() * np.amax(y_noise) | ||
return y_noise.astype('float64') + noise_amp * np.random.normal( | ||
size = y_noise.shape[0] | ||
) | ||
|
||
|
||
def add_hpss(samples): | ||
y_hpss = librosa.effects.hpss(samples.astype('float64')) | ||
return y_hpss[1] | ||
|
||
|
||
def strech(samples): | ||
input_length = len(samples) | ||
streching = samples.copy() | ||
random_strech = np.random.uniform(low = 0.5, high = 1.3) | ||
print('random_strech = ', random_strech) | ||
streching = librosa.effects.time_stretch( | ||
streching.astype('float'), random_strech | ||
) | ||
return streching | ||
|
||
|
||
def random_augmentation(samples): | ||
cp = samples.copy() | ||
if np.random.randint(0, 2): | ||
length_change = np.random.uniform(low = 0.8, high = 1) | ||
speed_fac = 1.0 / length_change | ||
print('resample length_change = ', length_change) | ||
tmp = np.interp( | ||
np.arange(0, len(cp), speed_fac), np.arange(0, len(cp)), cp | ||
) | ||
minlen = min(cp.shape[0], tmp.shape[0]) | ||
cp *= 0 | ||
cp[0:minlen] = tmp[0:minlen] | ||
|
||
if np.random.randint(0, 2): | ||
dyn_change = np.random.uniform(low = 1.5, high = 3) | ||
print('dyn_change = ', dyn_change) | ||
cp = cp * dyn_change | ||
|
||
if np.random.randint(0, 2): | ||
noise_amp = 0.005 * np.random.uniform() * np.amax(cp) | ||
cp = cp.astype('float64') + noise_amp * np.random.normal( | ||
size = cp.shape[0] | ||
) | ||
|
||
if np.random.randint(0, 2): | ||
timeshift_fac = 0.2 * 2 * (np.random.uniform() - 0.5) | ||
print('timeshift_fac = ', timeshift_fac) | ||
start = int(cp.shape[0] * timeshift_fac) | ||
if start > 0: | ||
cp = np.pad(cp, (start, 0), mode = 'constant')[0 : cp.shape[0]] | ||
else: | ||
cp = np.pad(cp, (0, -start), mode = 'constant')[0 : cp.shape[0]] | ||
return cp | ||
|
||
|
||
with open('train-test.json') as fopen: | ||
wavs = json.load(fopen)['train'] | ||
|
||
if not os.path.exists('augment'): | ||
os.makedirs('augment') | ||
|
||
for no, wav in enumerate(wavs): | ||
try: | ||
root, ext = os.path.splitext(wav) | ||
if (no + 1) % 100 == 0: | ||
print(no + 1, root, ext) | ||
root = root.replace('/', '<>') | ||
root = '%s/%s'%('augment', root) | ||
sample_rate, samples = scipy.io.wavfile.read(wav) | ||
aug = change_pitch_speech(samples) | ||
librosa.output.write_wav( | ||
'%s-1%s' % (root, ext), | ||
aug.astype('float32'), | ||
sample_rate, | ||
norm = True, | ||
) | ||
|
||
aug = change_amplitude(samples) | ||
librosa.output.write_wav( | ||
'%s-2%s' % (root, ext), | ||
aug.astype('float32'), | ||
sample_rate, | ||
norm = True, | ||
) | ||
|
||
aug = add_noise(samples) | ||
librosa.output.write_wav( | ||
'%s-3%s' % (root, ext), | ||
aug.astype('float32'), | ||
sample_rate, | ||
norm = True, | ||
) | ||
|
||
aug = add_hpss(samples) | ||
librosa.output.write_wav( | ||
'%s-4%s' % (root, ext), | ||
aug.astype('float32'), | ||
sample_rate, | ||
norm = True, | ||
) | ||
|
||
aug = strech(samples) | ||
librosa.output.write_wav( | ||
'%s-5%s' % (root, ext), | ||
aug.astype('float32'), | ||
sample_rate, | ||
norm = True, | ||
) | ||
|
||
aug = random_augmentation(samples) | ||
librosa.output.write_wav( | ||
'%s-6%s' % (root, ext), | ||
aug.astype('float32'), | ||
sample_rate, | ||
norm = True, | ||
) | ||
except Exception as e: | ||
print(e) | ||
pass |