Skip to content

Commit

Permalink
修正了文档中的笔误
Browse files Browse the repository at this point in the history
  • Loading branch information
jackfrued committed May 27, 2024
1 parent 10a33cc commit 5d1fd16
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion Day36-45/43.索引.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
## 索引

索引是关系型数据库中用来提升查询性能最为重要的手段。关系型数据库中的索引就像一本书的目录,我们可以想象一下,如果要从一本书中找出某个知识点,但是这本书没有目录,这将是意见多么可怕的事情!我们估计得一篇一篇的翻下去,才能确定这个知识点到底在什么位置。创建索引虽然会带来存储空间上的开销,就像一本书的目录会占用一部分篇幅一样,但是在牺牲空间后换来的查询时间的减少也是非常显著的。
索引是关系型数据库中用来提升查询性能最为重要的手段。关系型数据库中的索引就像一本书的目录,我们可以想象一下,如果要从一本书中找出某个知识点,但是这本书没有目录,这将是一件多么可怕的事情!我们估计得一篇一篇的翻下去,才能确定这个知识点到底在什么位置。创建索引虽然会带来存储空间上的开销,就像一本书的目录会占用一部分篇幅一样,但是在牺牲空间后换来的查询时间的减少也是非常显著的。

MySQL 数据库中所有数据类型的列都可以被索引。对于MySQL 8.0 版本的 InnoDB 存储引擎来说,它支持三种类型的索引,分别是 B+ 树索引、全文索引和 R 树索引。这里,我们只介绍使用得最为广泛的 B+ 树索引。使用 B+ 树的原因非常简单,因为它是目前在基于磁盘进行海量数据存储和排序上最有效率的数据结构。B+ 树是一棵[平衡树](https://zh.wikipedia.org/zh-cn/%E5%B9%B3%E8%A1%A1%E6%A0%91),树的高度通常为3或4,但是却可以保存从百万级到十亿级的数据,而从这些数据里面查询一条数据,只需要3次或4次 I/O 操作。

Expand Down

0 comments on commit 5d1fd16

Please sign in to comment.