Skip to content

jabard89/SedSeqQuant

Repository files navigation

SedSeqQuant - RNA Fraction Quantification

Quantify the distribution of RNAs from cellular fractions.


Introduction

This package employs a bayesian statistical model to quantify the distribution of mRNA


1.1 Required input files and their format

Users need to provide a count matrix and a samplesheet file. Those files need to meet the conditions below:

1. Both the count matrix and samplesheet file need to be in the ".tsv" format

2. The count matrix should have a column of transcript_IDs then a column of counts for every Sample_ID. It is highly recommended to first filter this for verified ORFs. Counts can be integers or fraction estimates (e.g. est_counts from kallisto).

transcript_ID F01~snake_230331 F02~snake_230331
YAL068C 1.08 3.41
YAL067C 17 15
YAL064W 16 24

**3. In samplesheet file, there should be at least four columns "Sample_ID","Condition","Rep",and "Fraction". Every Sample_ID must be unique. For every Condition and Rep, there should be a Sample_ID corresponding to the three fractions: Total, Supernatant, and Pellet **

Sample_ID Condition Rep Fraction
F01~snake_230331 hairpinReporters30CNA~none yHG010 Total
F02~snake_230331 hairpinReporters30CNA~none yHG005 Total

4. For every line of comment, there should be a tag "#" at the begining of the text

Installation

We recommend you to use package "devtools" for dowloading this package from GitHub. Please refer devtools installation instructions for more information.

install.packages("devtools")

devtools::install_github("jabard89/SedSeqQuant")

Then load SedSeqQuant as a standard package:

library(SedSeqQuant)

Quick guide

count_data <- load_counts(count_file=file.path("count_matrix.tsv.gz"),
                          samplesheet = file.path("samplesheet.tsv"))
pd_noreps <- prepare_data_noreps(count_data,min_counts=20)
stanfit_noreps <- model_fit_noreps(pd_noreps)
sum_noreps <- get_stan_summary_noreps(stanfit_noreps,pd_noreps)
write_stan_summary_noreps(sum_noreps,file.path(wrk.dir,"output/no_reps"))

pd_withreps <- prepare_data_with_reps(count_data,min_counts=20)
stanfit_withreps <- model_fit_reps(pd_withreps,iter=8000,chains=4)
sum_withreps <- get_stan_summary_reps(stanfit_withreps,pd_withreps)
write_stan_summary_with_reps(sum_withreps,file.path(wrk.dir,"output/with_reps"))

About

R package for performing SedSeq analysis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •