Skip to content

Python Thai Automatic Speech Recognition

License

ivan-meer/pythaiasr

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyThaiASR

Python Thai Automatic Speech Recognition

pypiLicenseDownloadCoverage Status

PyThaiASR is a Python package for Automatic Speech Recognition with focus on Thai language. It have offline thai automatic speech recognition model.

License: Apache-2.0 License

Google Colab: Link Google colab

Model homepage: https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th

Install

pip install pythaiasr

For Wav2Vec2 with language model: if you want to use wannaphong/wav2vec2-large-xlsr-53-th-cv8-* model with language model, you needs to install by the step.

pip install pythaiasr[lm]
pip install https://github.com/kpu/kenlm/archive/refs/heads/master.zip

Usage

from pythaiasr import asr

file = "a.wav"
print(asr(file))

API

asr(data: str, model: str = _model_name, lm: bool=False, device: str=None, sampling_rate: int=16_000)
  • data: path of sound file or numpy array of the voice
  • model: The ASR model
  • lm: Use language model (except airesearch/wav2vec2-large-xlsr-53-th model)
  • device: device
  • sampling_rate: The sample rate
  • return: thai text from ASR

Options for model

  • airesearch/wav2vec2-large-xlsr-53-th (default) - AI RESEARCH - PyThaiNLP model
  • wannaphong/wav2vec2-large-xlsr-53-th-cv8-newmm - Thai Wav2Vec2 with CommonVoice V8 (newmm tokenizer)
  • wannaphong/wav2vec2-large-xlsr-53-th-cv8-deepcut - Thai Wav2Vec2 with CommonVoice V8 (deepcut tokenizer)

You can read about models from the list:

Docker

To use this inside of Docker do the following:

docker build -t <Your Tag name> .
docker run docker run --entrypoint /bin/bash -it <Your Tag name>

You will then get access to a interactive shell environment where you can use python with all packages installed.

About

Python Thai Automatic Speech Recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • Dockerfile 2.7%