Skip to content

Commit

Permalink
Merge pull request coqui-ai#3126 from akx/freevc-config-module
Browse files Browse the repository at this point in the history
Move FreeVCConfig to TTS.vc.configs (like all other config classes)
  • Loading branch information
erogol authored Nov 8, 2023
2 parents cc6e9fc + 5ae369d commit 77b1812
Show file tree
Hide file tree
Showing 2 changed files with 278 additions and 278 deletions.
277 changes: 275 additions & 2 deletions TTS/vc/configs/freevc_config.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,278 @@
from dataclasses import dataclass, field
from typing import List
from typing import List, Optional

from coqpit import Coqpit

from TTS.vc.configs.shared_configs import BaseVCConfig
from TTS.vc.models.freevc import FreeVCArgs, FreeVCAudioConfig, FreeVCConfig


@dataclass
class FreeVCAudioConfig(Coqpit):
"""Audio configuration
Args:
max_wav_value (float):
The maximum value of the waveform.
input_sample_rate (int):
The sampling rate of the input waveform.
output_sample_rate (int):
The sampling rate of the output waveform.
filter_length (int):
The length of the filter.
hop_length (int):
The hop length.
win_length (int):
The window length.
n_mel_channels (int):
The number of mel channels.
mel_fmin (float):
The minimum frequency of the mel filterbank.
mel_fmax (Optional[float]):
The maximum frequency of the mel filterbank.
"""

max_wav_value: float = field(default=32768.0)
input_sample_rate: int = field(default=16000)
output_sample_rate: int = field(default=24000)
filter_length: int = field(default=1280)
hop_length: int = field(default=320)
win_length: int = field(default=1280)
n_mel_channels: int = field(default=80)
mel_fmin: float = field(default=0.0)
mel_fmax: Optional[float] = field(default=None)


@dataclass
class FreeVCArgs(Coqpit):
"""FreeVC model arguments
Args:
spec_channels (int):
The number of channels in the spectrogram.
inter_channels (int):
The number of channels in the intermediate layers.
hidden_channels (int):
The number of channels in the hidden layers.
filter_channels (int):
The number of channels in the filter layers.
n_heads (int):
The number of attention heads.
n_layers (int):
The number of layers.
kernel_size (int):
The size of the kernel.
p_dropout (float):
The dropout probability.
resblock (str):
The type of residual block.
resblock_kernel_sizes (List[int]):
The kernel sizes for the residual blocks.
resblock_dilation_sizes (List[List[int]]):
The dilation sizes for the residual blocks.
upsample_rates (List[int]):
The upsample rates.
upsample_initial_channel (int):
The number of channels in the initial upsample layer.
upsample_kernel_sizes (List[int]):
The kernel sizes for the upsample layers.
n_layers_q (int):
The number of layers in the quantization network.
use_spectral_norm (bool):
Whether to use spectral normalization.
gin_channels (int):
The number of channels in the global conditioning vector.
ssl_dim (int):
The dimension of the self-supervised learning embedding.
use_spk (bool):
Whether to use external speaker encoder.
"""

spec_channels: int = field(default=641)
inter_channels: int = field(default=192)
hidden_channels: int = field(default=192)
filter_channels: int = field(default=768)
n_heads: int = field(default=2)
n_layers: int = field(default=6)
kernel_size: int = field(default=3)
p_dropout: float = field(default=0.1)
resblock: str = field(default="1")
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11])
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2])
upsample_initial_channel: int = field(default=512)
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
n_layers_q: int = field(default=3)
use_spectral_norm: bool = field(default=False)
gin_channels: int = field(default=256)
ssl_dim: int = field(default=1024)
use_spk: bool = field(default=False)
num_spks: int = field(default=0)
segment_size: int = field(default=8960)


@dataclass
class FreeVCConfig(BaseVCConfig):
"""Defines parameters for FreeVC End2End TTS model.
Args:
model (str):
Model name. Do not change unless you know what you are doing.
model_args (FreeVCArgs):
Model architecture arguments. Defaults to `FreeVCArgs()`.
audio (FreeVCAudioConfig):
Audio processing configuration. Defaults to `FreeVCAudioConfig()`.
grad_clip (List):
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
lr_gen (float):
Initial learning rate for the generator. Defaults to 0.0002.
lr_disc (float):
Initial learning rate for the discriminator. Defaults to 0.0002.
lr_scheduler_gen (str):
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_gen_params (dict):
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
lr_scheduler_disc (str):
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_disc_params (dict):
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
scheduler_after_epoch (bool):
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
optimizer (str):
Name of the optimizer to use with both the generator and the discriminator networks. One of the
`torch.optim.*`. Defaults to `AdamW`.
kl_loss_alpha (float):
Loss weight for KL loss. Defaults to 1.0.
disc_loss_alpha (float):
Loss weight for the discriminator loss. Defaults to 1.0.
gen_loss_alpha (float):
Loss weight for the generator loss. Defaults to 1.0.
feat_loss_alpha (float):
Loss weight for the feature matching loss. Defaults to 1.0.
mel_loss_alpha (float):
Loss weight for the mel loss. Defaults to 45.0.
return_wav (bool):
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
compute_linear_spec (bool):
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
use_weighted_sampler (bool):
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
weighted_sampler_attrs (dict):
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
by overweighting `root_path` by 2.0. Defaults to `{}`.
weighted_sampler_multipliers (dict):
Weight each unique value of a key returned by the formatter for weighted sampling.
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
r (int):
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
add_blank (bool):
If true, a blank token is added in between every character. Defaults to `True`.
test_sentences (List[List]):
List of sentences with speaker and language information to be used for testing.
language_ids_file (str):
Path to the language ids file.
use_language_embedding (bool):
If true, language embedding is used. Defaults to `False`.
Note:
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
Example:
>>> from TTS.vc.configs.freevc_config import FreeVCConfig
>>> config = FreeVCConfig()
"""

model: str = "freevc"
# model specific params
model_args: FreeVCArgs = field(default_factory=FreeVCArgs)
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig)

# optimizer
# TODO with training support

# loss params
# TODO with training support

# data loader params
return_wav: bool = True
compute_linear_spec: bool = True

# sampler params
use_weighted_sampler: bool = False # TODO: move it to the base config
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})

# overrides
r: int = 1 # DO NOT CHANGE
add_blank: bool = True

# multi-speaker settings
# use speaker embedding layer
num_speakers: int = 0
speakers_file: str = None
speaker_embedding_channels: int = 256

# use d-vectors
use_d_vector_file: bool = False
d_vector_file: List[str] = None
d_vector_dim: int = None

def __post_init__(self):
for key, val in self.model_args.items():
if hasattr(self, key):
self[key] = val
Loading

0 comments on commit 77b1812

Please sign in to comment.