Skip to content

Reverse-engineered the official API for Jimeng/Dreamina’s text-to-image and image-to-image features. Drew inspiration from several experts’ projects and made some tweaks, which significantly improved stability.

License

Notifications You must be signed in to change notification settings

iptag/jimeng-api

Repository files navigation

Jimeng API

中文文档

🎨 Free AI Image and Video Generation API Service - Based on reverse engineering of Jimeng AI (China site) and Dreamina (international site).

Node.js TypeScript Docker License

✨ Features

  • 🎨 AI Image Generation: Supports multiple models and resolutions (default 2K, supports 4K, 1K).
  • 🖼️ Image-to-Image Synthesis: Supports local images or image URLs.
  • 🎬 AI Video Generation: Supports text-to-video generation, and adds local image upload for image-to-video on the China site.
  • 🌐 International Site Support: Added support for text-to-image and image-to-image APIs for the Dreamina international site. Please file an issue if you encounter problems.
  • 🔄 Smart Polling: Adaptive polling mechanism to optimize generation efficiency.
  • 🛡️ Unified Exception Handling: Comprehensive error handling and retry mechanism.
  • 📊 Detailed Logs: Structured logging for easy debugging.
  • 🐳 Docker Support: Containerized deployment, ready to use out of the box.
  • ⚙️ Log Level Control: Dynamically adjust log output level through configuration files.

⚠ Risk Warning

  • This project is for research and educational purposes only. It does not accept any financial donations or transactions!
  • For personal use and research only. Avoid putting pressure on the official servers. Violators may have their accounts banned or, in serious cases, break the law!
  • For personal use and research only. Avoid putting pressure on the official servers. Violators may have their accounts banned or, in serious cases, break the law!
  • For personal use and research only. Avoid putting pressure on the official servers. Violators may have their accounts banned or, in serious cases, break the law!

✨ New Feature Highlights

📐 ratio and resolution Parameter Support

Image dimensions are now controlled by the ratio and resolution parameters, providing greater flexibility. The default resolution is set to 2k.

curl -X POST http://localhost:5100/v1/images/generations \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-4.0\", \"prompt\": \"A beautiful girl, film-like feel\", \"ratio\": \"4:3\", \"resolution\": \"2k\"}"

Supported resolutions: 1k, 2k, 4k

Supported ratios: 1:1, 4:3, 3:4, 16:9, 9:16, 3:2, 2:3, 21:9

🚀 Quick Start

Getting sessionid

  • The method for obtaining the sessionid is the same for the domestic site (Jimeng), international site (Dreamina), as shown in the image below.

Note 1: The API endpoints are the same for domestic and international sites, but require different prefixes to distinguish:

  • Domestic site: Use sessionid directly, e.g., Bearer your_session_id
  • US site: Add us- prefix, e.g., Bearer us-your_session_id
  • Hong Kong site: Add hk- prefix, e.g., Bearer hk-your_session_id
  • Japan site: Add jp- prefix, e.g., Bearer jp-your_session_id
  • Singapore site: Add sg- prefix, e.g., Bearer sg-your_session_id

Note 2: Domestic and international sites now support both text-to-image and image-to-image. The nanobanana model has been added for the international site.

Note 3: When using the nanobanana model on the international site, the generated images will be fixed at 1024x1024 and 2k, consistent with the official settings.

Environment Requirements

  • Node.js 18+
  • npm or yarn
  • Docker (optional)

Installation and Deployment

Method 1: Docker Image Pull and Update (Recommended)

Pull command

docker run -d \
  --name jimeng-api \
  -p 5100:5100 \
  --restart unless-stopped \
  ghcr.io/iptag/jimeng-api:latest

Update command

docker run --rm \
  -v /var/run/docker.sock:/var/run/docker.sock \
  containrrr/watchtower \
  --run-once jimeng-api

Method 2: Direct Run

# Clone the project
git clone <repository-url>
cd jimeng-api

# Install dependencies
npm install

# Build files
npm run build

# Start the service
npm run dev

Method 3: Docker Deployment (recommended)

🚀 Quick Start
# Using docker-compose
docker-compose up -d

# Or build and run manually
docker build -t jimeng-api .

docker run -d \
  --name jimeng-api \
  -p 5100:5100 \
  --restart unless-stopped \
  jimeng-api
🔧 Common Commands
# Rebuild and start
docker-compose up -d --build

# View service logs
docker logs jimeng-api

# Stop service
docker-compose down

# Enter container for debugging
docker exec -it jimeng-api sh
📊 Docker Image Features
  • Multi-stage build: Optimized image size (170MB)
  • Non-root user: Enhanced security (user:jimeng,)
  • Health check: Automatic service status monitoring
  • Unified port: Uses port 5100 both inside and outside the container
  • Log management: Structured log output

Configuration Description

configs/dev/service.yml

name: jimeng-api
route: src/api/routes/index.ts
port: 5100

configs/dev/system.yml

requestLog: true
debug: false
log_level: info # Log levels: error, warning, info (default), debug

🤖 Claude Code Skill

This project includes a dedicated Claude Code Skill for quick image generation using the Jimeng API directly within Claude Code conversations.

Features

  • 🎯 Quick Generation: Use Jimeng API to generate images directly in conversations
  • 📁 Auto-Save: Generated images are automatically saved to the project's /pic directory
  • 🔄 Format Conversion: Automatic WebP to PNG conversion
  • 🎨 Dual Modes: Supports both text-to-image and image-to-image generation
  • ⚙️ Configurable: Customizable ratio, resolution, model parameters, and more

Installation

  1. Ensure the jimeng-api service is running:
# Start the service with Docker
docker-compose up -d
# or
docker run -d --name jimeng-api -p 5100:5100 ghcr.io/iptag/jimeng-api:latest
  1. Copy the skill to Claude Code's skills directory:
# Copy to user-level global skills directory
cp -r jimeng-api ~/.claude/skills/

# Or copy to project-level skills directory
cp -r jimeng-api ./.claude/skills/
  1. Install Python dependencies:
pip install requests Pillow

Usage Example

In Claude Code, simply use natural language:

User: "Generate a 2K 16:9 image of a futuristic city at sunset using Jimeng"

Claude: [Automatically invokes the skill, generates images, and saves to /pic directory]

For detailed usage, please refer to jimeng-api/Skill.md.

📖 API Documentation

Text-to-Image

POST /v1/images/generations

Request Parameters:

  • model (string): The name of the model to use.
  • prompt (string): The text description of the image.
  • ratio (string, optional): The aspect ratio of the image, defaults to "1:1". Supported ratios: 1:1, 4:3, 3:4, 16:9, 9:16, 3:2, 2:3, 21:9. Note: When intelligent_ratio is true, this parameter will be ignored and the system will automatically infer the optimal ratio from the prompt.
  • resolution (string, optional): The resolution level, defaults to "2k". Supported resolutions: 1k, 2k, 4k.
  • intelligent_ratio (boolean, optional): Whether to enable intelligent ratio, defaults to false. When enabled, the system automatically infers the optimal image ratio from the prompt (e.g., "portrait" → 9:16, "landscape" → 16:9).
  • negative_prompt (string, optional): Negative prompt words.
  • sample_strength (number, optional): Sampling strength (0.0-1.0).
  • response_format (string, optional): Response format ("url"(default) or "b64_json").
# Default parameters (ratio: "1:1", resolution: "2k")
curl -X POST http://localhost:5100/v1/images/generations \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-4.0\", \"prompt\": \"A cute little cat\"}"

# Example using 4K resolution
curl -X POST http://localhost:5100/v1/images/generations \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-4.0\", \"prompt\": \"Magnificent landscape, ultra-high resolution\", \"ratio\": \"16:9\", \"resolution\": \"4k\"}"

# Example using intelligent ratio (system will infer 9:16 from "portrait")
curl -X POST http://localhost:5100/v1/images/generations \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-4.0\", \"prompt\": \"A running lion, portrait orientation\", \"resolution\": \"2k\", \"intelligent_ratio\": true}"

Supported Models:

  • nanobanana: Only supported on the international site.
  • jimeng-4.0: Supported on both domestic and international sites.
  • jimeng-3.1: Only supported on the domestic site.
  • jimeng-3.0: Supported on both domestic and international sites.
  • jimeng-2.1: Only supported on the domestic site.
  • jimeng-xl-pro

Supported Ratios and Corresponding Resolutions:

resolution ratio Resolution
1k 1:1 1328×1328
4:3 1472×1104
3:4 1104×1472
16:9 1664×936
9:16 936×1664
3:2 1584×1056
2:3 1056×1584
21:9 2016×864
2k (default) 1:1 2048×2048
4:3 2304×1728
3:4 1728×2304
16:9 2560×1440
9:16 1440×2560
3:2 2496×1664
2:3 1664×2496
21:9 3024×1296
4k 1:1 4096×4096
4:3 4608×3456
3:4 3456×4608
16:9 5120×2880
9:16 2880×5120
3:2 4992×3328
2:3 3328×4992
21:9 6048×2592

Image-to-Image

POST /v1/images/compositions

Function Description: Generate a new image based on one or more input images, combined with a text prompt. Supports various creative modes like image blending, style transfer, and content synthesis.

# International site image-to-image example (local file upload)
# US site uses "us-YOUR_SESSION_ID"
# Hong Kong site uses "hk-YOUR_SESSION_ID"
# Japan site uses "jp-YOUR_SESSION_ID"
curl -X POST http://localhost:5100/v1/images/compositions \
  -H "Authorization: Bearer us-YOUR_SESSION_ID" \
  -F "prompt=A cute cat, anime style" \
  -F "model=jimeng-4.0" \
  -F "images=@/path/to/your/local/cat.jpg"

Request Parameters:

  • model (string): The name of the model to use.
  • prompt (string): Text description of the image to guide the generation.
  • images (array): An array of input images.
  • ratio (string, optional): The aspect ratio of the image, defaults to "1:1". Supported ratios: 1:1, 4:3, 3:4, 16:9, 9:16, 3:2, 2:3, 21:9.
  • resolution (string, optional): The resolution level, defaults to "2k". Supported resolutions: 1k, 2k, 4k.
  • intelligent_ratio (boolean, optional): Whether to enable intelligent ratio, defaults to false. When enabled, the system automatically adjusts the output ratio based on the prompt and input images.
  • negative_prompt (string, optional): Negative prompt words.
  • sample_strength (number, optional): Sampling strength (0.0-1.0).
  • response_format (string, optional): Response format ("url"(default) or "b64_json").

Usage Restrictions:

  • Number of input images: 1-10
  • Supported image formats: Common formats like JPG, PNG, WebP, etc.
  • Image size limit: Recommended not to exceed 10MB per image.
  • Generation time: Usually 30 seconds to 5 minutes, complex compositions may take longer.

Usage Examples:

# Example 1: URL image style transfer (using application/json)
curl -X POST http://localhost:5100/v1/images/compositions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-4.0\", \"prompt\": \"Convert this photo into an oil painting style, with vibrant colors and distinct brushstrokes\", \"images\": [\"https://example.com/photo.jpg\"], \"ratio\": \"1:1\", \"resolution\": \"2k\", \"sample_strength\": 0.7}"

# Example 2: Local single file upload (using multipart/form-data)
curl -X POST http://localhost:5100/v1/images/compositions \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -F "prompt=A cute cat, anime style" \
  -F "model=jimeng-4.0" \
  -F "ratio=1:1" \
  -F "resolution=1k" \
  -F "images=@/path/to/your/local/cat.jpg"

# Example 3: Local multiple file upload (using multipart/form-data)
curl -X POST http://localhost:5100/v1/images/compositions \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -F "prompt=Merge these two images" \
  -F "model=jimeng-4.0" \
  -F "images=@/path/to/your/image1.jpg" \
  -F "images=@/path/to/your/image2.png"

Successful Response Example (applies to all examples above):

{
  "created": 1703123456,
  "data": [
    {
      "url": "https://p3-sign.toutiaoimg.com/tos-cn-i-tb4s082cfz/abc123.webp"
    }
  ],
  "input_images": 1,
  "composition_type": "multi_image_synthesis"
}

FAQ & Solutions

Q: What to do if image upload fails? A: Check if the image URL is accessible, ensure the image format is correct, and the file size does not exceed 10MB.

Q: What to do if generation takes too long? A: Complex multi-image compositions take longer. Please be patient. If it's not completed after 10 minutes, you can resubmit the request.

Q: How to improve composition quality? A:

  • Use high-quality input images.
  • Write detailed and accurate prompts.
  • Adjust the sample_strength parameter appropriately.
  • Avoid using too many conflicting image styles.

Q: What image formats are supported? A: Common formats like JPG, PNG, WebP, GIF are supported. JPG or PNG are recommended.

Q: Can I use local images? A: Yes. Direct upload of local files is now supported. Please refer to the "Local file upload example" above. You can also continue to use the network image URL method.

Video Generation

POST /v1/videos/generations

Function Description: Generate a video based on a text prompt (Text-to-Video), or combined with input start/end frame images (Image-to-Video). Supports three generation modes:

  1. Text-to-Video: Pure text prompt without any images
  2. Image-to-Video: Single image as the first frame
  3. First-Last Frame: Two images as the first and last frames

Mode Detection: The system automatically determines the generation mode based on the presence of images:

  • No images → Text-to-Video mode
  • 1 image → Image-to-Video mode (only first_frame_image is provided)
  • 2 images → First-Last Frame mode (both first_frame_image and end_frame_image are provided)

Request Parameters:

  • model (string): The name of the video model to use.
  • prompt (string): The text description of the video content.
  • ratio (string, optional): Video aspect ratio, defaults to "1:1". Supported ratios: 1:1, 4:3, 3:4, 16:9, 9:16, 21:9. Note: In image-to-video mode (when images are provided), this parameter will be ignored, and the video aspect ratio will be determined by the input image's actual ratio.
  • resolution (string, optional): Video resolution, defaults to "720p". Supported resolutions: 720p, 1080p.
  • duration (number, optional): Video duration in seconds, defaults to 5. Supported values: 5 (5 seconds), 10 (10 seconds).
  • file_paths (array, optional): An array of image URLs to specify the start frame (1st element) and end frame (2nd element) of the video.
  • [file] (file, optional): Local image files uploaded via multipart/form-data (up to 2) to specify the start frame and end frame. The field name can be arbitrary, e.g., image1.
  • response_format (string, optional): Response format, supports url (default) or b64_json.

Image Input Description:

  • You can provide input images via file_paths (URL array) or by directly uploading files.
  • If both methods are provided, the system will prioritize the locally uploaded files.
  • Up to 2 images are supported, the 1st as the start frame, the 2nd as the end frame.
  • Important: Once image input is provided (image-to-video or first-last frame video), the ratio parameter will be ignored, and the video aspect ratio will be determined by the input image's actual ratio. The resolution parameter remains effective.

Supported Video Models:

  • jimeng-video-3.0-pro - Professional Edition
  • jimeng-video-3.0 - Standard Edition
  • jimeng-video-3.0-fast - Fast Edition (China site only)
  • jimeng-video-2.0-pro - Professional Edition v2
  • jimeng-video-2.0 - Standard Edition v2

Usage Examples:

# Example 1: Text-to-Video (0 images) - Pure text generation
curl -X POST http://localhost:5100/v1/videos/generations \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-video-3.0\", \"prompt\": \"A lion running on the grassland\", \"ratio\": \"16:9\", \"resolution\": \"1080p\", \"duration\": 10}"

# Example 2: Image-to-Video (1 image) - Single image as first frame
curl -X POST http://localhost:5100/v1/videos/generations \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -F "prompt=A man is talking" \
  -F "model=jimeng-video-3.0" \
  -F "ratio=9:16" \
  -F "duration=5" \
  -F "image_file_1=@/path/to/your/first-frame.png"

# Example 3: First-Last Frame (2 images) - Two images as first and last frames
curl -X POST http://localhost:5100/v1/videos/generations \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -F "prompt=Smooth transition between scenes" \
  -F "model=jimeng-video-3.0" \
  -F "ratio=16:9" \
  -F "duration=10" \
  -F "image_file_1=@/path/to/first-frame.png" \
  -F "image_file_2=@/path/to/last-frame.png"

# Example 4: Image-to-Video with URL image
curl -X POST http://localhost:5100/v1/videos/generations \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-video-3.0\", \"prompt\": \"A woman dancing in a garden\", \"ratio\": \"4:3\", \"duration\": 10, \"filePaths\": [\"https://example.com/your-image.jpg\"]}"

Chat Completions

POST /v1/chat/completions

curl -X POST http://localhost:5100/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_SESSION_ID" \
  -d \
    "{\"model\": \"jimeng-4.0\", \"messages\": [ { \"role\": \"user\", \"content\": \"Draw a landscape painting\" } ]}"

🔍 API Response Format

Image Generation Response

{
  "created": 1759058768,
  "data": [
    {
      "url": "https://example.com/image1.jpg"
    },
    {
      "url": "https://example.com/image2.jpg"
    }
  ]
}

Chat Completion Response

{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1759058768,
  "model": "jimeng-4.0",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "![image](https://example.com/generated-image.jpg)"
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 10,
    "completion_tokens": 20,
    "total_tokens": 30
  }
}

Stream Response (SSE)

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1759058768,"model":"jimeng-4.0","choices":[{"index":0,"delta":{"role":"assistant","content":"🎨 Generating image, please wait..."},"finish_reason":null}]}

data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1759058768,"model":"jimeng-4.0","choices":[{"index":1,"delta":{"role":"assistant","content":"![image](https://example.com/image.jpg)"},"finish_reason":"stop"}]}

data: [DONE]

🏗️ Project Architecture

jimeng-api/
├── src/
│   ├── api/
│   │   ├── controllers/          # Controller layer
│   │   │   ├── core.ts          # Core functions (network requests, file handling)
│   │   │   ├── images.ts        # Image generation logic
│   │   │   ├── videos.ts        # Video generation logic
│   │   │   └── chat.ts          # Chat interface logic
│   │   ├── routes/              # Route definitions
│   │   └── consts/              # Constant definitions
│   ├── lib/                     # Core library
│   │   ├── configs/            # Configuration loading
│   │   ├── consts/             # Constants
│   │   ├── exceptions/         # Exception classes
│   │   ├── interfaces/         # Interface definitions
│   │   ├── request/            # Request handling
│   │   ├── response/           # Response handling
│   │   ├── config.ts           # Configuration center
│   │   ├── server.ts           # Server core
│   │   ├── logger.ts           # Logger
│   │   ├── error-handler.ts    # Unified error handling
│   │   ├── smart-poller.ts     # Smart poller
│   │   └── aws-signature.ts    # AWS signature
│   ├── daemon.ts               # Daemon process
│   └── index.ts               # Entry file
├── configs/                    # Configuration files
├── Dockerfile                 # Docker configuration
└── package.json              # Project configuration

🔧 Core Components

SmartPoller

  • Adapts polling interval based on status codes.
  • Multiple exit conditions to avoid invalid waiting.
  • Detailed progress tracking and logging.

Unified ErrorHandler

  • Categorized error handling (network errors, API errors, timeouts, etc.).
  • Automatic retry mechanism.
  • User-friendly error messages.

Safe JSON Parsing

  • Automatically fixes common JSON format issues.
  • Supports trailing commas and single quotes.
  • Detailed parsing error logs.

⚙️ Advanced Configuration

Polling Configuration

export const POLLING_CONFIG = {
  MAX_POLL_COUNT: 900,    // Max polling attempts (15 minutes)
  POLL_INTERVAL: 5000,    // Base polling interval (5 second)
  STABLE_ROUNDS: 5,       // Stable rounds
  TIMEOUT_SECONDS: 900    // Timeout (15 minutes)
};

Retry Configuration

export const RETRY_CONFIG = {
  MAX_RETRY_COUNT: 3,     // Max retry attempts
  RETRY_DELAY: 5000       // Retry delay (5 seconds)
};

🐛 Troubleshooting

Common Issues

  1. JSON Parsing Error

    • Check if the request body format is correct.
    • The system will automatically fix common format issues.
  2. Invalid sessionid

    • Re-obtain the sessionid for the corresponding site.
    • Check if the sessionid format is correct.
  3. Generation Timeout

    • Image generation: usually 1-3 minutes.
    • Video generation: usually 3-15 minutes.
    • The system will automatically handle timeouts.
  4. Insufficient Credits

    • Go to the Jimeng/Dreamina official website to check your credit balance.
    • The system will provide detailed credit status information.

🙏 Acknowledgements

This project is based on the contributions and inspiration of the following open-source project:

  • jimeng-free-api-all - Thanks to this project for providing an important reference and technical basis for the reverse engineering of the Jimeng API. This project has improved its functionality and architecture based on it.

📄 License

GPL v3 License - see the LICENSE file for details.

⚠️ Disclaimer

This project is for learning and research purposes only. Please comply with relevant service terms and laws. Any consequences arising from the use of this project are the sole responsibility of the user.

About

Reverse-engineered the official API for Jimeng/Dreamina’s text-to-image and image-to-image features. Drew inspiration from several experts’ projects and made some tweaks, which significantly improved stability.

Topics

Resources

License

Stars

Watchers

Forks

Packages