Skip to content

Update torch mx example script #1838

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 12, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,9 @@
help="For accuracy measurement only.")
parser.add_argument("--save_accuracy_path", default=None,
help="Save accuracy results path.")
parser.add_argument("--tasks", type=str, default="lambada_openai",
help="tasks list for accuracy validation")
parser.add_argument("--tasks", nargs="+", default=["lambada_openai"], type=str,
help="tasks list for accuracy validation"
)
parser.add_argument("--peft_model_id", type=str, default=None, help="model_name_or_path of peft model")

args = parser.parse_args()
Expand All @@ -54,57 +55,41 @@ def get_user_model():
return user_model, tokenizer

user_model, tokenizer = get_user_model()
if args.quantize:
from neural_compressor.torch.quantization import MXQuantConfig, quantize
quant_config = MXQuantConfig(w_dtype=args.w_dtype, act_dtype=args.act_dtype, weight_only=args.woq)
user_model = quantize(model=user_model, quant_config=quant_config)

from neural_compressor.torch.quantization import MXQuantConfig, prepare, convert
quant_config = MXQuantConfig(w_dtype=args.w_dtype, act_dtype=args.act_dtype, weight_only=args.woq)
user_model = prepare(model=user_model, quant_config=quant_config)
user_model = convert(model=user_model)
user_model.eval()

if args.accuracy:
user_model.eval()
from intel_extension_for_transformers.transformers.llm.evaluation.lm_eval import evaluate, LMEvalParser
args = LMEvalParser(
model="hf",
user_model=user_model,
tokenizer=tokenizer,
batch_size=args.batch_size,
tasks=args.tasks,
device="cpu",
)
results = evaluate(args)
dumped = json.dumps(results, indent=2)
if args.save_accuracy_path:
with open(args.save_accuracy_path, "w") as f:
f.write(dumped)
for task_name in args.tasks:
if task_name == "wikitext":
acc = results["results"][task_name]["word_perplexity"]
else:
acc = results["results"][task_name]["acc"]
print("Accuracy: %.5f" % acc)
print('Batch size = %d' % args.batch_size)
from intel_extension_for_transformers.transformers.llm.evaluation.lm_eval import evaluate, LMEvalParser
eval_args = LMEvalParser(
model="hf",
user_model=user_model,
tokenizer=tokenizer,
batch_size=args.batch_size,
tasks=','.join(args.tasks),
device="cpu",
)

if args.performance:
user_model.eval()
from intel_extension_for_transformers.llm.evaluation.lm_eval import evaluate
import time
samples = args.iters * args.batch_size
start = time.time()
results = evaluate(
model="hf",
tokenizer=tokenizer,
user_model=user_model,
batch_size=args.batch_size,
tasks=args.tasks,
limit=samples,
)
end = time.time()
for task_name in args.tasks:
if task_name == "wikitext":
acc = results["results"][task_name]["word_perplexity"]
else:
acc = results["results"][task_name]["acc"]
print("Accuracy: %.5f" % acc)
print('Throughput: %.3f samples/sec' % (samples / (end - start)))
print('Latency: %.3f ms' % ((end - start)*1000 / samples))
print('Batch size = %d' % args.batch_size)
results = evaluate(eval_args)
dumped = json.dumps(results, indent=2)
if args.save_accuracy_path:
with open(args.save_accuracy_path, "w") as f:
f.write(dumped)

eval_acc = 0
for task_name in args.tasks:
if task_name == "wikitext":
print("Accuracy for %s is: %s" %
(task_name, results["results"][task_name]["word_perplexity,none"]))
eval_acc += results["results"][task_name]["word_perplexity,none"]
else:
print("Accuracy for %s is: %s" %
(task_name, results["results"][task_name]["acc,none"]))
eval_acc += results["results"][task_name]["acc,none"]

if len(args.tasks) != 0:
eval_acc /= len(args.tasks)
print("Accuracy: %.5f" % eval_acc)
print('Batch size = %d' % args.batch_size)
Loading