Skip to content

[ESIMD] Add support for an arbitrary number of elements to simd::copy_from/to #5135

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -577,7 +577,7 @@ template <typename Ty, int N, class Derived, class SFINAE> class simd_obj_impl {
/// vector_aligned_tag, \p addr must be aligned by simd_obj_impl's vector_type
/// alignment. If Flags is overaligned_tag<N>, \p addr must be aligned by N.
/// Program not meeting alignment requirements results in undefined behavior.
template <typename Flags = element_aligned_tag,
template <typename Flags = element_aligned_tag, int ChunkSize = 32,
typename = std::enable_if_t<is_simd_flag_type_v<Flags>>>
ESIMD_INLINE void copy_from(const Ty *addr, Flags = {}) SYCL_ESIMD_FUNCTION;

Expand All @@ -593,6 +593,7 @@ template <typename Ty, int N, class Derived, class SFINAE> class simd_obj_impl {
/// alignment. If Flags is overaligned_tag<N>, offset must be aligned by N.
/// Program not meeting alignment requirements results in undefined behavior.
template <typename AccessorT, typename Flags = element_aligned_tag,
int ChunkSize = 32,
typename = std::enable_if_t<is_simd_flag_type_v<Flags>>>
ESIMD_INLINE EnableIfAccessor<AccessorT, accessor_mode_cap::can_read,
sycl::access::target::global_buffer, void>
Expand All @@ -606,7 +607,7 @@ template <typename Ty, int N, class Derived, class SFINAE> class simd_obj_impl {
/// vector_aligned_tag, \p addr must be aligned by simd_obj_impl's vector_type
/// alignment. If Flags is overaligned_tag<N>, \p addr must be aligned by N.
/// Program not meeting alignment requirements results in undefined behavior.
template <typename Flags = element_aligned_tag,
template <typename Flags = element_aligned_tag, int ChunkSize = 32,
typename = std::enable_if_t<is_simd_flag_type_v<Flags>>>
ESIMD_INLINE void copy_to(Ty *addr, Flags = {}) const SYCL_ESIMD_FUNCTION;

Expand All @@ -621,6 +622,7 @@ template <typename Ty, int N, class Derived, class SFINAE> class simd_obj_impl {
/// alignment. If Flags is overaligned_tag<N>, offset must be aligned by N.
/// Program not meeting alignment requirements results in undefined behavior.
template <typename AccessorT, typename Flags = element_aligned_tag,
int ChunkSize = 32,
typename = std::enable_if_t<is_simd_flag_type_v<Flags>>>
ESIMD_INLINE EnableIfAccessor<AccessorT, accessor_mode_cap::can_write,
sycl::access::target::global_buffer, void>
Expand Down Expand Up @@ -733,144 +735,256 @@ template <typename Ty, int N, class Derived, class SFINAE> class simd_obj_impl {
// ----------- Outlined implementations of simd_obj_impl class APIs.

template <typename T, int N, class T1, class SFINAE>
template <typename Flags, typename>
template <typename Flags, int ChunkSize, typename>
void simd_obj_impl<T, N, T1, SFINAE>::copy_from(const T *Addr,
Flags) SYCL_ESIMD_FUNCTION {
constexpr unsigned Size = sizeof(T) * N;
constexpr unsigned Align = Flags::template alignment<T1>;

simd<T, N> Tmp;
constexpr unsigned BlockSize = OperandSize::OWORD * 8;
constexpr unsigned NumBlocks = Size / BlockSize;
constexpr unsigned RemSize = Size % BlockSize;

if constexpr (Align >= OperandSize::DWORD && Size % OperandSize::OWORD == 0 &&
detail::isPowerOf2(Size / OperandSize::OWORD)) {
Tmp = block_load<T, N, Flags>(Addr, Flags{});
detail::isPowerOf2(RemSize / OperandSize::OWORD)) {
if constexpr (NumBlocks > 0) {
constexpr unsigned BlockN = BlockSize / sizeof(T);
ForHelper<NumBlocks>::unroll([BlockN, Addr, this](unsigned Block) {
select<BlockN, 1>(Block * BlockN) =
block_load<T, BlockN, Flags>(Addr + (Block * BlockN), Flags{});
});
}
if constexpr (RemSize > 0) {
constexpr unsigned RemN = RemSize / sizeof(T);
constexpr unsigned BlockN = BlockSize / sizeof(T);
select<RemN, 1>(NumBlocks * BlockN) =
block_load<T, RemN, Flags>(Addr + (NumBlocks * BlockN), Flags{});
}
} else if constexpr (sizeof(T) == 8) {
constexpr unsigned AlignUH =
(N * 4) % Align == 0 ? Align : std::min(Align, 4u);
simd<int32_t, N> LH(reinterpret_cast<const int32_t *>(Addr), Flags{});
simd<int32_t, N> UH(reinterpret_cast<const int32_t *>(Addr) + N,
overaligned<AlignUH>);
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(0) = LH;
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(N) = UH;
} else if constexpr (N == 1) {
Tmp = *Addr;
} else if constexpr (N == 8 || N == 16 || N == 32) {
simd<uint32_t, N> Offsets(0u, sizeof(T));
Tmp = gather<T, N>(Addr, Offsets);
simd<int32_t, N * 2> BC(reinterpret_cast<const int32_t *>(Addr), Flags{});
bit_cast_view<int32_t>() = BC;
} else {
constexpr int N1 = N < 8 ? 8 : N < 16 ? 16 : 32;
simd_mask_type<N1> Pred(0);
Pred.template select<N, 1>() = 1;
simd<uint32_t, N1> Offsets(0u, sizeof(T));
simd<T, N1> Vals = gather<T, N1>(Addr, Offsets, Pred);
Tmp = Vals.template select<N, 1>();
}
*this = Tmp.data();
constexpr unsigned NumChunks = N / ChunkSize;
if constexpr (NumChunks > 0) {
simd<uint32_t, ChunkSize> Offsets(0u, sizeof(T));
ForHelper<NumChunks>::unroll([Addr, &Offsets, this](unsigned Block) {
select<ChunkSize, 1>(Block * ChunkSize) =
gather<T, ChunkSize>(Addr + (Block * ChunkSize), Offsets);
});
}
constexpr unsigned RemN = N % ChunkSize;
if constexpr (RemN > 0) {
if constexpr (RemN == 1) {
select<1, 1>(NumChunks * ChunkSize) = Addr[NumChunks * ChunkSize];
} else if constexpr (RemN == 8 || RemN == 16) {
simd<uint32_t, RemN> Offsets(0u, sizeof(T));
select<RemN, 1>(NumChunks * ChunkSize) =
gather<T, RemN>(Addr + (NumChunks * ChunkSize), Offsets);
} else {
constexpr int N1 = RemN < 8 ? 8 : RemN < 16 ? 16 : 32;
simd_mask_type<N1> Pred(0);
Pred.template select<RemN, 1>() = 1;
simd<uint32_t, N1> Offsets(0u, sizeof(T));
simd<T, N1> Vals =
gather<T, N1>(Addr + (NumChunks * ChunkSize), Offsets, Pred);
select<RemN, 1>(NumChunks * ChunkSize) =
Vals.template select<RemN, 1>();
}
}
}
}

template <typename T, int N, class T1, class SFINAE>
template <typename AccessorT, typename Flags, typename>
template <typename AccessorT, typename Flags, int ChunkSize, typename>
ESIMD_INLINE EnableIfAccessor<AccessorT, accessor_mode_cap::can_read,
sycl::access::target::global_buffer, void>
simd_obj_impl<T, N, T1, SFINAE>::copy_from(AccessorT acc, uint32_t offset,
Flags) SYCL_ESIMD_FUNCTION {
constexpr unsigned Size = sizeof(T) * N;
constexpr unsigned Align = Flags::template alignment<T1>;

simd<T, N> Tmp;
constexpr unsigned BlockSize = OperandSize::OWORD * 8;
constexpr unsigned NumBlocks = Size / BlockSize;
constexpr unsigned RemSize = Size % BlockSize;

if constexpr (Align >= OperandSize::DWORD && Size % OperandSize::OWORD == 0 &&
detail::isPowerOf2(Size / OperandSize::OWORD)) {
Tmp = block_load<T, N, AccessorT, Flags>(acc, offset, Flags{});
detail::isPowerOf2(RemSize / OperandSize::OWORD)) {
if constexpr (NumBlocks > 0) {
constexpr unsigned BlockN = BlockSize / sizeof(T);
ForHelper<NumBlocks>::unroll([BlockN, acc, offset, this](unsigned Block) {
select<BlockN, 1>(Block * BlockN) =
block_load<T, BlockN, AccessorT, Flags>(
acc, offset + (Block * BlockSize), Flags{});
});
}
if constexpr (RemSize > 0) {
constexpr unsigned RemN = RemSize / sizeof(T);
constexpr unsigned BlockN = BlockSize / sizeof(T);
select<RemN, 1>(NumBlocks * BlockN) =
block_load<T, RemN, AccessorT, Flags>(
acc, offset + (NumBlocks * BlockSize), Flags{});
}
} else if constexpr (sizeof(T) == 8) {
constexpr unsigned AlignUH =
(N * 4) % Align == 0 ? Align : std::min(Align, 4u);
simd<int32_t, N> LH(acc, offset, Flags{});
simd<int32_t, N> UH(acc, offset + N * 4, overaligned<AlignUH>);
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(0) = LH;
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(N) = UH;
} else if constexpr (N == 1 || N == 8 || N == 16 || N == 32) {
simd<uint32_t, N> Offsets(0u, sizeof(T));
Tmp = gather<T, N, AccessorT>(acc, Offsets, offset);
simd<int32_t, N * 2> BC(acc, offset, Flags{});
bit_cast_view<int32_t>() = BC;
} else {
constexpr int N1 = N < 8 ? 8 : N < 16 ? 16 : 32;
simd_mask_type<N1> Pred(0);
Pred.template select<N, 1>() = 1;
simd<uint32_t, N1> Offsets(0u, sizeof(T));
simd<T, N1> Vals = gather<T, N1>(acc, Offsets, offset, Pred);
Tmp = Vals.template select<N, 1>();
}
*this = Tmp.data();
constexpr unsigned NumChunks = N / ChunkSize;
if constexpr (NumChunks > 0) {
simd<uint32_t, ChunkSize> Offsets(0u, sizeof(T));
ForHelper<NumChunks>::unroll(
[acc, offset, &Offsets, this](unsigned Block) {
select<ChunkSize, 1>(Block * ChunkSize) =
gather<T, ChunkSize, AccessorT>(
acc, Offsets, offset + (Block * ChunkSize * sizeof(T)));
});
}
constexpr unsigned RemN = N % ChunkSize;
if constexpr (RemN > 0) {
if constexpr (RemN == 1 || RemN == 8 || RemN == 16) {
simd<uint32_t, RemN> Offsets(0u, sizeof(T));
select<RemN, 1>(NumChunks * ChunkSize) = gather<T, RemN, AccessorT>(
acc, Offsets, offset + (NumChunks * ChunkSize * sizeof(T)));
} else {
constexpr int N1 = RemN < 8 ? 8 : RemN < 16 ? 16 : 32;
simd_mask_type<N1> Pred(0);
Pred.template select<RemN, 1>() = 1;
simd<uint32_t, N1> Offsets(0u, sizeof(T));
simd<T, N1> Vals = gather<T, N1>(
acc, Offsets, offset + (NumChunks * ChunkSize * sizeof(T)), Pred);
select<RemN, 1>(NumChunks * ChunkSize) =
Vals.template select<RemN, 1>();
}
}
}
}

template <typename T, int N, class T1, class SFINAE>
template <typename Flags, typename>
template <typename Flags, int ChunkSize, typename>
void simd_obj_impl<T, N, T1, SFINAE>::copy_to(T *addr,
Flags) const SYCL_ESIMD_FUNCTION {
constexpr unsigned Size = sizeof(T) * N;
constexpr unsigned Align = Flags::template alignment<T1>;

constexpr unsigned BlockSize = OperandSize::OWORD * 8;
constexpr unsigned NumBlocks = Size / BlockSize;
constexpr unsigned RemSize = Size % BlockSize;

simd<T, N> Tmp = data();
if constexpr (Align >= OperandSize::OWORD && Size % OperandSize::OWORD == 0 &&
detail::isPowerOf2(Size / OperandSize::OWORD)) {
block_store<T, N>(addr, cast_this_to_derived());
detail::isPowerOf2(RemSize / OperandSize::OWORD)) {
if constexpr (NumBlocks > 0) {
constexpr unsigned BlockN = BlockSize / sizeof(T);
ForHelper<NumBlocks>::unroll([BlockN, addr, &Tmp](unsigned Block) {
block_store<T, BlockN>(addr + (Block * BlockN),
Tmp.template select<BlockN, 1>(Block * BlockN));
});
}
if constexpr (RemSize > 0) {
constexpr unsigned RemN = RemSize / sizeof(T);
constexpr unsigned BlockN = BlockSize / sizeof(T);
block_store<T, RemN>(addr + (NumBlocks * BlockN),
Tmp.template select<RemN, 1>(NumBlocks * BlockN));
}
} else if constexpr (sizeof(T) == 8) {
constexpr unsigned AlignUH =
(N * 4) % Align == 0 ? Align : std::min(Align, 4u);
simd<T, N> Tmp = data();
simd<int32_t, N> LH =
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(0);
simd<int32_t, N> UH =
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(N);
LH.copy_to(reinterpret_cast<int32_t *>(addr), Flags{});
UH.copy_to(reinterpret_cast<int32_t *>(addr) + N, overaligned<AlignUH>);
} else if constexpr (N == 1) {
*addr = data()[0];
} else if constexpr (N == 8 || N == 16 || N == 32) {
simd<uint32_t, N> offsets(0u, sizeof(T));
scatter<T, N>(addr, offsets, cast_this_to_derived().data());
simd<int32_t, N * 2> BC = Tmp.template bit_cast_view<int32_t>();
BC.copy_to(reinterpret_cast<int32_t *>(addr), Flags{});
} else {
constexpr int N1 = N < 8 ? 8 : N < 16 ? 16 : 32;
simd_mask_type<N1> pred(0);
pred.template select<N, 1>() = 1;
simd<T, N1> vals(0);
vals.template select<N, 1>() = cast_this_to_derived().data();
simd<uint32_t, N1> offsets(0u, sizeof(T));
scatter<T, N1>(addr, offsets, vals, pred);
constexpr unsigned NumChunks = N / ChunkSize;
if constexpr (NumChunks > 0) {
simd<uint32_t, ChunkSize> Offsets(0u, sizeof(T));
ForHelper<NumChunks>::unroll([addr, &Offsets, &Tmp](unsigned Block) {
scatter<T, ChunkSize>(
addr + (Block * ChunkSize), Offsets,
Tmp.template select<ChunkSize, 1>(Block * ChunkSize));
});
}
constexpr unsigned RemN = N % ChunkSize;
if constexpr (RemN > 0) {
if constexpr (RemN == 1) {
addr[NumChunks * ChunkSize] = Tmp[NumChunks * ChunkSize];
} else if constexpr (RemN == 8 || RemN == 16) {
simd<uint32_t, RemN> Offsets(0u, sizeof(T));
scatter<T, RemN>(addr + (NumChunks * ChunkSize), Offsets,
Tmp.template select<RemN, 1>(NumChunks * ChunkSize));
} else {
constexpr int N1 = RemN < 8 ? 8 : RemN < 16 ? 16 : 32;
simd_mask_type<N1> Pred(0);
Pred.template select<RemN, 1>() = 1;
simd<T, N1> Vals(0);
Vals.template select<RemN, 1>() =
Tmp.template select<RemN, 1>(NumChunks * ChunkSize);
simd<uint32_t, N1> Offsets(0u, sizeof(T));
scatter<T, N1>(addr + (NumChunks * ChunkSize), Offsets, Vals, Pred);
}
}
}
}

template <typename T, int N, class T1, class SFINAE>
template <typename AccessorT, typename Flags, typename>
template <typename AccessorT, typename Flags, int ChunkSize, typename>
ESIMD_INLINE EnableIfAccessor<AccessorT, accessor_mode_cap::can_write,
sycl::access::target::global_buffer, void>
simd_obj_impl<T, N, T1, SFINAE>::copy_to(AccessorT acc, uint32_t offset,
Flags) const SYCL_ESIMD_FUNCTION {
constexpr unsigned Size = sizeof(T) * N;
constexpr unsigned Align = Flags::template alignment<T1>;

constexpr unsigned BlockSize = OperandSize::OWORD * 8;
constexpr unsigned NumBlocks = Size / BlockSize;
constexpr unsigned RemSize = Size % BlockSize;

simd<T, N> Tmp = data();
if constexpr (Align >= OperandSize::OWORD && Size % OperandSize::OWORD == 0 &&
detail::isPowerOf2(Size / OperandSize::OWORD)) {
block_store<T, N, AccessorT>(acc, offset, cast_this_to_derived());
detail::isPowerOf2(RemSize / OperandSize::OWORD)) {
if constexpr (NumBlocks > 0) {
constexpr unsigned BlockN = BlockSize / sizeof(T);
ForHelper<NumBlocks>::unroll([BlockN, acc, offset, &Tmp](unsigned Block) {
block_store<T, BlockN, AccessorT>(
acc, offset + (Block * BlockSize),
Tmp.template select<BlockN, 1>(Block * BlockN));
});
}
if constexpr (RemSize > 0) {
constexpr unsigned RemN = RemSize / sizeof(T);
constexpr unsigned BlockN = BlockSize / sizeof(T);
block_store<T, RemN, AccessorT>(
acc, offset + (NumBlocks * BlockSize),
Tmp.template select<RemN, 1>(NumBlocks * BlockN));
}
} else if constexpr (sizeof(T) == 8) {
constexpr unsigned AlignUH =
(N * 4) % Align == 0 ? Align : std::min(Align, 4u);
simd<T, N> Tmp = data();
simd<int32_t, N> LH =
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(0);
simd<int32_t, N> UH =
Tmp.template bit_cast_view<int32_t>().template select<N, 1>(N);
LH.copy_to(acc, offset, Flags{});
UH.copy_to(acc, offset + N * 4, overaligned<AlignUH>);
} else if constexpr (N == 1 || N == 8 || N == 16 || N == 32) {
simd<uint32_t, N> offsets(0u, sizeof(T));
scatter<T, N, AccessorT>(acc, offsets, cast_this_to_derived().data(),
offset);
simd<int32_t, N * 2> BC = Tmp.template bit_cast_view<int32_t>();
BC.copy_to(acc, offset, Flags{});
} else {
constexpr int N1 = N < 8 ? 8 : N < 16 ? 16 : 32;
simd_mask_type<N1> pred(0);
pred.template select<N, 1>() = 1;
simd<T, N1> vals(0);
vals.template select<N, 1>() = cast_this_to_derived().data();
simd<uint32_t, N1> offsets(0u, sizeof(T));
scatter<T, N1, AccessorT>(acc, offsets, vals, offset, pred);
constexpr unsigned NumChunks = N / ChunkSize;
if constexpr (NumChunks > 0) {
simd<uint32_t, ChunkSize> Offsets(0u, sizeof(T));
ForHelper<NumChunks>::unroll([acc, offset, &Offsets,
&Tmp](unsigned Block) {
scatter<T, ChunkSize, AccessorT>(
acc, Offsets, Tmp.template select<ChunkSize, 1>(Block * ChunkSize),
offset + (Block * ChunkSize * sizeof(T)));
});
}
constexpr unsigned RemN = N % ChunkSize;
if constexpr (RemN > 0) {
if constexpr (RemN == 1 || RemN == 8 || RemN == 16) {
simd<uint32_t, RemN> Offsets(0u, sizeof(T));
scatter<T, RemN, AccessorT>(
acc, Offsets, Tmp.template select<RemN, 1>(NumChunks * ChunkSize),
offset + (NumChunks * ChunkSize * sizeof(T)));
} else {
constexpr int N1 = RemN < 8 ? 8 : RemN < 16 ? 16 : 32;
simd_mask_type<N1> Pred(0);
Pred.template select<RemN, 1>() = 1;
simd<T, N1> Vals(0);
Vals.template select<RemN, 1>() =
Tmp.template select<RemN, 1>(NumChunks * ChunkSize);
simd<uint32_t, N1> Offsets(0u, sizeof(T));
scatter<T, N1, AccessorT>(acc, Offsets, Vals,
offset + (NumChunks * ChunkSize * sizeof(T)),
Pred);
}
}
}
}
} // namespace detail
Expand Down
Loading