Skip to content

[SYCL][Matrix] Enable wi_slice for joint_matrix #4979

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Dec 22, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions sycl/include/CL/__spirv/spirv_ops.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,22 @@ __spirv_JointMatrixSUMadINTEL(
__spv::__spirv_JointMatrixINTEL<T3, M, N, LC, S> *C,
__spv::Scope::Flag Sc = __spv::Scope::Flag::Subgroup);

template <typename T, std::size_t R, std::size_t C, __spv::MatrixLayout U,
__spv::Scope::Flag S = __spv::Scope::Flag::Subgroup>
extern SYCL_EXTERNAL size_t __spirv_JointMatrixWorkItemLengthINTEL(
__spv::__spirv_JointMatrixINTEL<T, R, C, U, S> *);

template <typename T, std::size_t R, std::size_t C, __spv::MatrixLayout U,
__spv::Scope::Flag S = __spv::Scope::Flag::Subgroup>
extern SYCL_EXTERNAL T __spirv_VectorExtractDynamic(
__spv::__spirv_JointMatrixINTEL<T, R, C, U, S> *, size_t i);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The width of size_t type is platform dependent I think. Typically it becomes i32 or i64 in LLVM IR. I would prefer a more specific type, like uint32_t.
Is 32 bits enough for indexing in slices, what do you think @dkhaldi?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

32 bits is enough. But size_t is widely used in other APIs.
Specifically, what if the user is calculating this iterator using some WI id or other id which is also size_t, will that work?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If we explicitly say that this parameter must be uint32_t there may be a warning about type narrowing during compilation. But now I think maybe I was wrong and we really should stick to size_t. On LLVM IR level we can handle it in the same way as memcpy (https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic), i.e. it is overloaded type.


template <typename T, std::size_t R, std::size_t C, __spv::MatrixLayout U,
__spv::Scope::Flag S = __spv::Scope::Flag::Subgroup>
extern SYCL_EXTERNAL __spv::__spirv_JointMatrixINTEL<T, R, C, U, S> *
__spirv_VectorInsertDynamic(__spv::__spirv_JointMatrixINTEL<T, R, C, U, S> *,
T val, size_t i);

#ifndef __SPIRV_BUILTIN_DECLARATIONS__
#error \
"SPIR-V built-ins are not available. Please set -fdeclare-spirv-builtins flag."
Expand Down
74 changes: 74 additions & 0 deletions sycl/include/sycl/ext/oneapi/matrix/matrix-jit.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,11 @@ template <int D> struct spv_scope_traits<sycl::group<D>> {
constexpr static auto value = __spv::Scope::Workgroup;
};

template <typename T, size_t NumRows, size_t NumCols,
matrix_layout Layout = matrix_layout::row_major,
typename Group = sycl::sub_group>
class wi_slice;

template <typename T, size_t NumRows, size_t NumCols,
matrix_layout Layout = matrix_layout::row_major,
typename Group = sycl::sub_group>
Expand All @@ -58,6 +63,11 @@ struct joint_matrix {
PI_INVALID_DEVICE);
#endif // __SYCL_DEVICE_ONLY__
}

inline __SYCL_ALWAYS_INLINE wi_slice<T, NumRows, NumCols, Layout, Group>
get_wi_data() {
return wi_slice<T, NumRows, NumCols, Layout, Group>(*this);
}
};

template <typename Group, typename T, size_t NumRows, size_t NumCols,
Expand Down Expand Up @@ -191,6 +201,70 @@ joint_matrix_mad(Group sg, joint_matrix<T1, M, K, LayoutA, Group> &mA,
PI_INVALID_DEVICE);
#endif // __SYCL_DEVICE_ONLY__
}

template <typename T, size_t NumRows, size_t NumCols,
matrix_layout Layout = matrix_layout::row_major,
typename Group = sycl::sub_group>
class wi_element {
joint_matrix<T, NumRows, NumCols, Layout, Group> &M;
std::size_t idx;

public:
wi_element(joint_matrix<T, NumRows, NumCols, Layout, Group> &Mat,
std::size_t i)
: M(Mat), idx(i) {}
operator T() {
#ifdef __SYCL_DEVICE_ONLY__
return __spirv_VectorExtractDynamic(M.spvm, idx);
#else
throw runtime_error("joint matrix is not supported on host device.",
PI_INVALID_DEVICE);
#endif // __SYCL_DEVICE_ONLY__
}
wi_element &operator=(const T &rhs) {
#ifdef __SYCL_DEVICE_ONLY__
M.spvm = __spirv_VectorInsertDynamic(M.spvm, rhs, idx);
return *this;
#else
(void)rhs;
throw runtime_error("joint matrix is not supported on host device.",
PI_INVALID_DEVICE);
#endif // __SYCL_DEVICE_ONLY__
}
wi_element &operator*=(const T &rhs) {
#ifdef __SYCL_DEVICE_ONLY__
M.spvm = __spirv_VectorInsertDynamic(
M.spvm, __spirv_VectorExtractDynamic(M.spvm, idx) * rhs, idx);
return *this;
#else
(void)rhs;
throw runtime_error("joint matrix is not supported on host device.",
PI_INVALID_DEVICE);
#endif // __SYCL_DEVICE_ONLY__
}
// TODO: add other arithmetic operators
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@yubingex007-a11y please do not forget to add overloading for other operators

};

template <typename T, size_t NumRows, size_t NumCols, matrix_layout Layout,
typename Group>
class wi_slice {
joint_matrix<T, NumRows, NumCols, Layout, Group> &M;

public:
wi_slice(joint_matrix<T, NumRows, NumCols, Layout, Group> &Mat) : M(Mat) {}
size_t length() {
#ifdef __SYCL_DEVICE_ONLY__
return __spirv_JointMatrixWorkItemLengthINTEL(M.spvm);
#else
throw runtime_error("joint matrix is not supported on host device.",
PI_INVALID_DEVICE);
#endif // __SYCL_DEVICE_ONLY__
}
wi_element<T, NumRows, NumCols, Layout, Group> operator[](size_t i) {
return wi_element<T, NumRows, NumCols, Layout, Group>(M, i);
}
};

} // namespace experimental::matrix
} // namespace oneapi
} // namespace ext
Expand Down
177 changes: 177 additions & 0 deletions sycl/test/matrix/matrix-elemwise-ops.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
// RUN: %clangxx -fsycl -O2 %s -o %t.out
// XFAIL: *
#include <CL/sycl.hpp>
#if (SYCL_EXT_ONEAPI_MATRIX == 2)
#include <iostream>

using namespace sycl;
using namespace sycl::ext::oneapi::experimental::matrix;

#define TILE_SZ 16
#define TM (TILE_SZ - 4)
#define TN (TILE_SZ - 4)
#define TK (4 * TILE_SZ - 16)

#define SG_SZ 16

template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix {
public:
T *mat;

public:
T *get_data() { return mat; }
void set_data(T *data) { mat = data; }
big_matrix(T *data) : mat(data) {}
};

template <typename T1, typename T2, size_t NUM_ROWS_A, size_t NUM_COLS_A,
size_t NUM_ROWS_B, size_t NUM_COLS_B, size_t NUM_ROWS_C,
size_t NUM_COLS_C>
void matrix_multiply(big_matrix<T1, NUM_ROWS_C, NUM_COLS_C> &C,
big_matrix<T2, NUM_ROWS_A, NUM_COLS_A> &A,
big_matrix<T2, NUM_ROWS_B, NUM_COLS_B> &B) {
size_t M = NUM_ROWS_C;
size_t N = NUM_COLS_C;
size_t K = NUM_COLS_A;
// B => K/4 x N*4, A => M x K, C => M, N
// stride should be X's cols, e.g., B's stirde = N*4
assert(NUM_ROWS_C == NUM_ROWS_A && NUM_COLS_A == NUM_ROWS_B * 4);
size_t NDRangeM = M / TM;
size_t NDRangeN = N / TN;
buffer<int8_t, 2> bufA(A.get_data(), range<2>(M, K));
buffer<int8_t, 2> bufB(B.get_data(), range<2>(K, N));
buffer<int32_t, 2> bufC(C.get_data(), range<2>(M, N));

queue q;
q.submit([&](handler &cgh) {
auto accC = bufC.get_access<access::mode::read_write>(cgh);
auto accA = bufA.get_access<access::mode::read_write>(cgh);
auto accB = bufB.get_access<access::mode::read_write>(cgh);

cgh.parallel_for<class imatrix>(
nd_range<2>({NDRangeM, NDRangeN * SG_SZ}, {1, 1 * SG_SZ}),
[accA, accB, accC, M, N, K](nd_item<2> spmd_item)

{
// The submatrix API has to be accessed by all the workitems in a
// subgroup these functions will be called once by the subgroup no
// code divergence between the workitems
const auto global_idx = spmd_item.get_global_id(0);
const auto global_idy = spmd_item.get_global_id(1);
const auto sg_startx = global_idx - spmd_item.get_local_id(0);
const auto sg_starty = global_idy - spmd_item.get_local_id(1);

ext::oneapi::sub_group sg = spmd_item.get_sub_group();
joint_matrix<int8_t, TM, TK> sub_a(sg);
// For B, since current implementation does not support non-packed
// layout, users need to specify the updated VNNI sizes along with
// the packed_b layout. By default, the layout is row_major and size
// is (TK, TN).
joint_matrix<int8_t, TK, TN, matrix_layout::packed_b> sub_b(sg);
joint_matrix<int32_t, TM, TN> sub_c(sg);

// AMX: 8 register tiles : 1k byte size, SMmaxxSKmax =16x64
// strideX = X's cols, so strideC = N, strideA = K, strideB = N*4
joint_matrix_load(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
for (int k = 0; k < K / TK; k += 1) {
joint_matrix_load(
sg, sub_a, accA.get_pointer() + (sg_startx * TM) * K + k * TK,
K, matrix_layout::row_major);
// Assuming B data is already in VNNI format.
joint_matrix_load(sg, sub_b,
accB.get_pointer() + (k * TK / 4) * (N * 4) +
sg_starty / SG_SZ * TN * 4,
N * 4, matrix_layout::packed_b);
sub_c = joint_matrix_mad(sg, sub_a, sub_b, sub_c);
}
auto wi_slice_c = sub_c.get_wi_data();
for (int i = 0; i < wi_slice_c.length(); i++) {
wi_slice_c[i] *= 2;
}
joint_matrix_store(sg, sub_c,
accC.get_pointer() + (sg_startx * TM) * N +
sg_starty / SG_SZ * TN,
N, matrix_layout::row_major);
}); // parallel for
}).wait();
}

static constexpr size_t MATRIX_M = TM * 2;
static constexpr size_t MATRIX_N = TN * 2;
static constexpr size_t MATRIX_K = TK * 2;
int8_t A[MATRIX_M][MATRIX_K];
int8_t B[MATRIX_K / 4][MATRIX_N * 4];
int32_t C[MATRIX_M][MATRIX_N];
int32_t D[MATRIX_M][MATRIX_N];

void matrix_multiply_ref(int32_t *A_mem, int32_t *B_mem, int32_t *C_mem, int M,
int N, int K) {
// tiling
for (int m = 0; m < M; m++)
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
char *va = (char *)(A_mem + m * K + k);
char *vb = (char *)(B_mem + k * N + n);
int acc = *(C_mem + m * N + n);
for (int i = 0; i < 4; i++) {
acc += (va[i] * vb[i]);
}
*(C_mem + m * N + n) = acc;
}
*(C_mem + m * N + n) *= 2;
}
}

int main() {
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_K; j++) {
A[i][j] = i + 2 * j;
}
}
for (int i = 0; i < MATRIX_K / 4; i++) {
for (int j = 0; j < MATRIX_N * 4; j++) {
B[i][j] = i + j;
}
}
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
C[i][j] = 1;
D[i][j] = 1;
}
}

big_matrix<int32_t, MATRIX_M, MATRIX_N> MC((int32_t *)&C);
big_matrix<int32_t, MATRIX_M, MATRIX_N> MD((int32_t *)&D);
big_matrix<int8_t, MATRIX_M, MATRIX_K> MA((int8_t *)&A);
big_matrix<int8_t, MATRIX_K / 4, MATRIX_N * 4> MB((int8_t *)&B);
matrix_multiply(MC, MA, MB);
matrix_multiply_ref((int32_t *)A, (int32_t *)B, (int32_t *)D, MATRIX_M,
MATRIX_N, MATRIX_K / 4);

bool res = true;
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++) {
if (C[i][j] != D[i][j])
res = false;
}
}
if (res)
std::cout << "passed\n";
else
std::cout << "failed\n";
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++)
std::cout << C[i][j] << ", ";
std::cout << "\n";
}
std::cout << std::endl;
for (int i = 0; i < MATRIX_M; i++) {
for (int j = 0; j < MATRIX_N; j++)
std::cout << D[i][j] << ", ";
std::cout << "\n";
}
}
#endif // (SYCL_EXT_ONEAPI_MATRIX == 2)