Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

enable DNNL Python OPs(adaptive_avg_pool2d, max_pool2d, max_pool3d) t… #7

Merged
merged 1 commit into from
May 14, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion intel_pytorch_extension_py/ops/linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def backward(ctx, grad_output):
return (grad_input, grad_weight, grad_bias)

def linear(input, weight, bias=None):
if input.device.type == 'dpcpp':
if input.device.type == 'dpcpp' and core.get_auto_dnnl():
return LinearFunction.apply(input, weight, bias)
return F_linear(input, weight, bias)

Expand Down
52 changes: 27 additions & 25 deletions intel_pytorch_extension_py/ops/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,16 +2,16 @@
from torch.autograd import Function
import torch.nn.functional as F
import _torch_ipex as core
from torch.nn.modules.utils import _single

F_adaptive_avg_pool2d = F.adaptive_avg_pool2d
torch_adaptive_avg_pool2d = torch._C._nn.adaptive_avg_pool2d
torch_max_pool2d = torch.max_pool2d
torch_max_pool3d = torch.max_pool3d

class AdaptiveAvgPool2dFunction(Function):
@staticmethod
def forward(ctx, input, output_size):
_output_size = _list_with_default(output_size, input.size())
output = core.adaptive_avg_pool2d(input, _output_size)
output = core.adaptive_avg_pool2d(input, _single(output_size))
ctx.save_for_backward(input)
return output

Expand All @@ -25,44 +25,46 @@ def backward(ctx, grad_output):
class MaxPoolingFunction(Function):
@staticmethod
def forward(ctx, input, kernel_size, stride, padding, dilation, ceil_mode):
output = core.max_pooling(input, (kernel_size,), (stride,), (padding,), (dilation,), ceil_mode)
ctx.save_for_backward(output, input)
ctx.kernel_size = kernel_size
ctx.stride = stride
ctx.padding = padding
ctx.dilation = dilation
ctx.kernel_size = _single(kernel_size)
ctx.stride = _single(stride)
ctx.padding = _single(padding)
ctx.dilation = _single(dilation)
ctx.ceil_mode = ceil_mode
output = core.max_pooling(input, ctx.kernel_size, ctx.stride, ctx.padding, ctx.dilation, ctx.ceil_mode)
ctx.save_for_backward(output, input)
return output

@staticmethod
def backward(ctx, grad_output):
output, input= ctx.saved_tensors
grad_output = grad_output.contiguous()
grad_input = core.max_pooling_backward(grad_output, output, input, (ctx.kernel_size,), (ctx.stride,), (ctx.padding,), (ctx.dilation,), ctx.ceil_mode)
grad_input = core.max_pooling_backward(grad_output, output, input, ctx.kernel_size, ctx.stride, ctx.padding, ctx.dilation, ctx.ceil_mode)
return (grad_input, None, None, None, None, None)

def _list_with_default(out_size, defaults):
if isinstance(out_size, int):
return (out_size,)
if len(defaults) <= len(out_size):
raise ValueError('Input dimension should be at least {}'.format(len(out_size) + 1))
return [v if v is not None else d for v, d in zip(out_size, defaults[-len(out_size):])]

def adaptive_avg_pool2d(input, output_size):
if input.device.type == 'dpcpp':
return AdaptiveAvgPool2dFunction.apply(input, output_size)
return F_adaptive_avg_pool2d(input, output_size)
try:
if input.device.type == 'dpcpp' and core.get_auto_dnnl():
return AdaptiveAvgPool2dFunction.apply(input, output_size)
except RuntimeError:
pass
return torch_adaptive_avg_pool2d(input, output_size)

def max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode):
if input.device.type == 'dpcpp':
return MaxPoolingFunction.apply(input, kernel_size, stride, padding, dilation, ceil_mode)
try:
if input.device.type == 'dpcpp' and core.get_auto_dnnl():
return MaxPoolingFunction.apply(input, kernel_size, stride, padding, dilation, ceil_mode)
except RuntimeError:
pass
return torch_max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)

def max_pool3d(input, kernel_size, stride, padding, dilation, ceil_mode):
if input.device.type == 'dpcpp':
return MaxPoolingFunction.apply(input, kernel_size, stride, padding, dilation, ceil_mode)
try:
if input.device.type == 'dpcpp' and core.get_auto_dnnl():
return MaxPoolingFunction.apply(input, kernel_size, stride, padding, dilation, ceil_mode)
except RuntimeError:
pass
return torch_max_pool3d(input, kernel_size, stride, padding, dilation, ceil_mode)

F.adaptive_avg_pool2d = adaptive_avg_pool2d
torch._C._nn.adaptive_avg_pool2d = adaptive_avg_pool2d
torch.max_pool2d = max_pool2d
torch.max_pool3d = max_pool3d
2 changes: 1 addition & 1 deletion intel_pytorch_extension_py/ops/reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ def forward(ctx, input, size):
return output

def reshape(input, size):
if input.device.type == 'dpcpp':
if input.device.type == 'dpcpp' and core.get_auto_dnnl():
return ReshapeFunction.apply(input, size)
return torch_reshape(input, size)

Expand Down
2 changes: 1 addition & 1 deletion tests/cpu/test_lazy_reorder.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
import torch
import _torch_ipex as ipex
ipex._initialize_aten_bindings()
import intel_pytorch_extension_py
import intel_pytorch_extension

import torch.nn as nn
import torch.backends.cudnn as cudnn
Expand Down
1 change: 1 addition & 0 deletions tests/cpu/test_rn50_cpu_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
import torch
import _torch_ipex as ipex
ipex._initialize_aten_bindings()
import intel_pytorch_extension

import torch.nn as nn
import torch.backends.cudnn as cudnn
Expand Down
1 change: 1 addition & 0 deletions tests/cpu/test_torch.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,7 @@
skipIf, skipCPUIfNoLapack, skipCUDAIfNoMagma, skipCUDAIfRocm, onlyCUDA, onlyCPU, \
dtypes, dtypesIfCUDA, deviceCountAtLeast, skipCUDAIf, precisionOverride, ipex
import torch.backends.quantized
import intel_pytorch_extension


# load_tests from common_utils is used to automatically filter tests for
Expand Down