Skip to content

Corruption with Wuerstchen and Stable Cascade models #529

Open
@Disty0

Description

@Disty0

Describe the bug

Wuerstchen and Wuerstchen based Stable Cascade models generates corrupted images.

  • Happens with any resolution.
  • Happens with both Intel ARC and Intel Datacenter GPU Max.
  • Happens with FP32 and BF16, and FP16 NaNs out.
  • BF16 and FP32 can NaN out too.

Might be related to my old corruption issue (#519) but this one happens with any resolution and happens with GPU Max too.

Example of the corruption:

Wuerstchen: https://huggingface.co/warp-ai/wuerstchen

wuerstchen

from functools import wraps
import torch
import intel_extension_for_pytorch
from diffusers import AutoPipelineForText2Image


original_interpolate = torch.nn.functional.interpolate
@wraps(torch.nn.functional.interpolate)
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False):
    if antialias or align_corners is not None or mode == 'bicubic':
        return_device = tensor.device
        return_dtype = tensor.dtype
        return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
        align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
    else:
        return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
        align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
torch.nn.functional.interpolate = interpolate


device = "xpu"
dtype = torch.bfloat16

pipeline =  AutoPipelineForText2Image.from_pretrained(
    "warp-ai/wuerstchen", torch_dtype=dtype
).to(device)

caption = "Anthropomorphic cat dressed as a fire fighter"

output = pipeline(
    prompt=caption,
    height=1024,
    width=1024,
    prior_guidance_scale=4.0,
    decoder_guidance_scale=0.0,
).images
output[0].save("wuerstchen.jpg")

Stable Cascade: https://huggingface.co/stabilityai/stable-cascade

stable-cascade

import torch
import intel_extension_for_pytorch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline

# Using diffusers from git+https://github.com/kashif/diffusers.git@wuerstchen-v3

device = "xpu"
num_images_per_prompt = 1

prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype=torch.float16).to(device)

prompt = "Anthropomorphic cat dressed as a pilot"
negative_prompt = ""

prior_output = prior(
    prompt=prompt,
    height=1024,
    width=1024,
    negative_prompt=negative_prompt,
    guidance_scale=4.0,
    num_images_per_prompt=num_images_per_prompt,
    num_inference_steps=20
)
decoder_output = decoder(
    image_embeddings=prior_output.image_embeddings.half(),
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=0.0,
    output_type="pil",
    num_inference_steps=10
).images

decoder_output[0].save("stable-cascade.jpg")

Versions

Collecting environment information...
PyTorch version: 2.1.0a0+cxx11.abi
PyTorch CXX11 ABI: Yes
IPEX version: 2.1.10+xpu
IPEX commit: a12f9f650
Build type: Release

OS: Arch Linux (x86_64)
GCC version: (GCC) 13.2.1 20230801
Clang version: 16.0.6
IGC version: 2024.0.0 (2024.0.0.20231017)
CMake version: version 3.28.3
Libc version: glibc-2.39

Python version: 3.11.7 (main, Jan 29 2024, 16:03:57) [GCC 13.2.1 20230801] (64-bit runtime)
Python platform: Linux-6.7.4-arch1-1-x86_64-with-glibc2.39
Is XPU available: True
DPCPP runtime version: 2024.0
MKL version: 2024.0
GPU models and configuration: 
[0] _DeviceProperties(name='Intel(R) Arc(TM) A770 Graphics', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=0, total_memory=15473MB, max_compute_units=512, gpu_eu_count=512)
Intel OpenCL ICD version: N/A
Level Zero version: N/A

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             16
On-line CPU(s) list:                0-15
Vendor ID:                          AuthenticAMD
Model name:                         AMD Ryzen 7 5800X3D 8-Core Processor
CPU family:                         25
Model:                              33
Thread(s) per core:                 2
Core(s) per socket:                 8
Socket(s):                          1
Stepping:                           2
Frequency boost:                    enabled
CPU(s) scaling MHz:                 81%
CPU max MHz:                        4548.8281
CPU min MHz:                        2200.0000
BogoMIPS:                           6803.97
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap
Virtualization:                     AMD-V
L1d cache:                          256 KiB (8 instances)
L1i cache:                          256 KiB (8 instances)
L2 cache:                           4 MiB (8 instances)
L3 cache:                           96 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-15
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] dctorch==0.1.2
[pip3] intel-extension-for-pytorch==2.1.10+xpu
[pip3] numpy==1.26.2
[pip3] open-clip-torch==2.24.0
[pip3] pytorch-lightning==1.9.4
[pip3] torch==2.1.0a0+cxx11.abi
[pip3] torchdiffeq==0.2.3
[pip3] torchmetrics==1.3.0.post0
[pip3] torchsde==0.2.6
[pip3] torchvision==0.16.0a0+cxx11.abi
[conda] N/A

Metadata

Metadata

Labels

ARCARC GPUCorrectnessOutput incorrect or unacceptable accuracy lossdGPU-Max

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions