-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add log exporting to e2e tests
Currently, the training library runs through a series of end-to-end tests which ensure there are no bugs in the code being tested. However; we do not perform any form of validation to assure that the training logic and quality has not diminished. This presents an issue where we can potentially be "correct" in the sense of no hard errors being hit, but invisible bugs may be introduced which cause models to regress in training quality, or other bugs that plague the models themselves to seep in. This commit fixes that problem by introducng the ability to export the training loss data itself from the test and rendering the loss curve using matplotlib. Signed-off-by: Oleg S <97077423+RobotSail@users.noreply.github.com>
- Loading branch information
Showing
4 changed files
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,6 +2,8 @@ | |
|
||
-r requirements.txt | ||
|
||
matplotlib | ||
numpy | ||
pre-commit>=3.0.4,<5.0 | ||
pylint>=2.16.2,<4.0 | ||
pylint-pydantic | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# Standard | ||
from argparse import ArgumentParser | ||
from pathlib import Path | ||
from subprocess import run | ||
from typing import Dict, List | ||
import json | ||
|
||
# Third Party | ||
from matplotlib import pyplot as plt | ||
from pydantic import BaseModel | ||
|
||
|
||
class Arguments(BaseModel): | ||
log_file: str | None = None | ||
output_file: str | ||
aws_region: str | ||
bucket_name: str | ||
base_branch: str | ||
pr_number: str | ||
head_sha: str | ||
origin_repository: str | ||
|
||
|
||
def render_image(loss_data: List[float], outfile: Path) -> str: | ||
# create the plot | ||
plt.figure() | ||
plt.plot(loss_data) | ||
plt.xlabel("Steps") | ||
plt.ylabel("Loss") | ||
plt.title("Training performance over fixed dataset") | ||
|
||
if outfile.exists(): | ||
outfile.unlink() | ||
|
||
plt.savefig(outfile, format="png") | ||
|
||
|
||
def contents_from_file(log_file: Path) -> List[Dict]: | ||
if not log_file.exists(): | ||
raise FileNotFoundError(f"Log file {log_file} does not exist") | ||
if log_file.is_dir(): | ||
raise ValueError(f"Log file {log_file} is a directory") | ||
with open(log_file, "r") as f: | ||
return [json.loads(l) for l in f.read().splitlines()] | ||
|
||
|
||
def read_loss_data(log_file: Path) -> List[float]: | ||
if not log_file: | ||
raise ValueError("log_file must be provided when source is file") | ||
contents = contents_from_file(log_file) | ||
|
||
# select the loss data | ||
loss_data = [item["total_loss"] for item in contents if "total_loss" in item] | ||
|
||
if not loss_data: | ||
raise ValueError("Loss data is empty") | ||
|
||
# ensure that the loss data is valid | ||
if not all(isinstance(l, float) for l in loss_data): | ||
raise ValueError("Loss data must be a list of floats") | ||
|
||
return loss_data | ||
|
||
|
||
def write_to_s3( | ||
file: Path, | ||
bucket_name: str, | ||
destination: str, | ||
): | ||
if not file.exists(): | ||
raise RuntimeError(f"File {file} does not exist") | ||
|
||
s3_path = f"s3://{bucket_name}/{destination}" | ||
results = run( | ||
["aws", "s3", "cp", str(file), s3_path], capture_output=True, check=True | ||
) | ||
if results.returncode != 0: | ||
raise RuntimeError(f"failed to upload to s3: {results.stderr.decode('utf-8')}") | ||
else: | ||
print(results.stdout.decode("utf-8")) | ||
|
||
|
||
def get_destination_path(base_ref: str, pr_number: str, head_sha: str): | ||
return f"pulls/{base_ref}/{pr_number}/{head_sha}/loss-graph.png" | ||
|
||
|
||
def write_md_file( | ||
output_file: Path, url: str, pr_number: str, head_sha: str, origin_repository: str | ||
): | ||
commit_url = f"https://github.com/{origin_repository}/commit/{head_sha}" | ||
md_template = f""" | ||
# Loss Graph for PR {args.pr_number} ([{args.head_sha[:7]}]({commit_url})) | ||
![Loss Graph]({url}) | ||
""" | ||
output_file.write_text(md_template, encoding="utf-8") | ||
|
||
|
||
def get_url(bucket_name: str, destination: str, aws_region: str) -> str: | ||
return f"https://{bucket_name}.s3.{aws_region}.amazonaws.com/{destination}" | ||
|
||
|
||
def main(args: Arguments): | ||
# first things first, we create the png file to upload to S3 | ||
log_file = Path(args.log_file) | ||
loss_data = read_loss_data(log_file=log_file) | ||
output_image = Path("/tmp/loss-graph.png") | ||
output_file = Path(args.output_file) | ||
render_image(loss_data=loss_data, outfile=output_image) | ||
destination_path = get_destination_path( | ||
base_ref=args.base_branch, pr_number=args.pr_number, head_sha=args.head_sha | ||
) | ||
write_to_s3( | ||
file=output_image, bucket_name=args.bucket_name, destination=destination_path | ||
) | ||
s3_url = get_url( | ||
bucket_name=args.bucket_name, | ||
destination=destination_path, | ||
aws_region=args.aws_region, | ||
) | ||
write_md_file( | ||
output_file=output_file, | ||
url=s3_url, | ||
pr_number=args.pr_number, | ||
head_sha=args.head_sha, | ||
origin_repository=args.origin_repository, | ||
) | ||
print(f"Loss graph uploaded to '{s3_url}'") | ||
print(f"Markdown file written to '{output_file}'") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--log-file", | ||
type=str, | ||
required=True, | ||
help="The log file to read the loss data from.", | ||
) | ||
parser.add_argument( | ||
"--output-file", | ||
type=str, | ||
required=True, | ||
help="The output file where the resulting markdown will be written.", | ||
) | ||
parser.add_argument( | ||
"--aws-region", | ||
type=str, | ||
required=True, | ||
help="S3 region to which the bucket belongs.", | ||
) | ||
parser.add_argument( | ||
"--bucket-name", type=str, required=True, help="The S3 bucket name" | ||
) | ||
parser.add_argument( | ||
"--base-branch", | ||
type=str, | ||
required=True, | ||
help="The base branch being merged to.", | ||
) | ||
parser.add_argument("--pr-number", type=str, required=True, help="The PR number") | ||
parser.add_argument( | ||
"--head-sha", type=str, required=True, help="The head SHA of the PR" | ||
) | ||
parser.add_argument( | ||
"--origin-repository", | ||
type=str, | ||
required=True, | ||
help="The repository to which the originating branch belongs to.", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
arguments = Arguments( | ||
log_file=args.log_file, | ||
output_file=args.output_file, | ||
aws_region=args.aws_region, | ||
bucket_name=args.bucket_name, | ||
base_branch=args.base_branch, | ||
pr_number=args.pr_number, | ||
head_sha=args.head_sha, | ||
origin_repository=args.origin_repository, | ||
) | ||
main(arguments) |