Skip to content

instadeepai/database_search_scaling

Repository files navigation

Comparative Framework Database Search

This project provides an interactive scaling analysis for proteomics database search strategies. It uses marimo to create a notebook-style web app for exploring how hardware performance and search parameters affect estimated runtimes and memory requirements.

Features

  • Interactive sliders and input boxes for hardware and search parameters
  • Visualizations of asymptotic scaling, memory overhead, and runtime heatmaps
  • Figures update automatically as parameters change

Requirements

Dependencies are listed in pyproject.toml.

Installation

  1. Clone the repository:

    git clone https://github.com/instadeepai/database_search_scaling.git
    cd database_search_scaling
  2. Install uv

Follow the official instructions.

  1. Create and activate a Python 3.12 environment:

    uv venv --python 3.12
    source .venv/bin/activate
  2. Install dependencies with uv:

    uv sync

Running the Interactive App

To launch the interactive notebook, run:

marimo run database_search_scaling.py

This will start a local web server and open the app in your browser. You can adjust parameters and view updated figures interactively.

Project Structure

  • database_search_scaling.py: Main marimo app with all interactive cells and visualizations.
  • pyproject.toml: Project metadata and dependencies.
  • .python-version: Specifies required Python version.

License

Apache 2.0


For more details on marimo, see the marimo documentation.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages