Skip to content
This repository has been archived by the owner on Feb 5, 2022. It is now read-only.

Commit

Permalink
Add fw/bw inner bridge redundancy lemmas
Browse files Browse the repository at this point in the history
  • Loading branch information
javierdiaz72 committed Aug 15, 2019
1 parent e64e7fd commit ed51dd4
Showing 1 changed file with 24 additions and 0 deletions.
24 changes: 24 additions & 0 deletions Isabelle/Chi_Calculus/Communication.thy
Original file line number Diff line number Diff line change
Expand Up @@ -614,4 +614,28 @@ proof -
unfolding tagged_new_channel_def .
qed

lemma inner_forward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> b \<rightarrow> a \<parallel> a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x)"
unfolding bidirectional_bridge_def using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> b \<rightarrow> a \<parallel> a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using inner_unidirectional_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
unfolding bidirectional_bridge_def using natural_simps by equivalence
finally show ?thesis .
qed

lemma inner_backward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> a \<rightarrow> b \<parallel> b \<rightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x)"
unfolding bidirectional_bridge_def using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<rightarrow> b \<parallel> b \<rightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using inner_unidirectional_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
unfolding bidirectional_bridge_def using natural_simps by equivalence
finally show ?thesis .
qed

end

0 comments on commit ed51dd4

Please sign in to comment.