Skip to content
This repository has been archived by the owner on Feb 5, 2022. It is now read-only.

Commit

Permalink
Relocate fw/bw bridge redundancy lemmas
Browse files Browse the repository at this point in the history
  • Loading branch information
javierdiaz72 committed Aug 15, 2019
1 parent 833f999 commit a0d9ab5
Showing 1 changed file with 28 additions and 28 deletions.
56 changes: 28 additions & 28 deletions Isabelle/Chi_Calculus/Communication.thy
Original file line number Diff line number Diff line change
Expand Up @@ -438,6 +438,34 @@ lemma backward_bridge_absorption:
shows "a \<leftrightarrow> b \<parallel> b \<rightarrow> a \<sim>\<^sub>\<flat> a \<leftrightarrow> b"
unfolding bidirectional_bridge_def using natural_simps by equivalence

lemma inner_forward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> (a \<leftrightarrow> b \<parallel> a \<rightarrow> b) \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x)"
using forward_bridge_absorption by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> (a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x))"
using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> (a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x)"
using inner_unidirectional_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> (a \<leftrightarrow> b \<parallel> a \<rightarrow> b) \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using natural_simps by equivalence
also have "\<dots>\<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using forward_bridge_absorption by equivalence
finally show ?thesis .
qed

lemma inner_backward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> b \<leftrightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x)"
using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> b \<leftrightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using inner_forward_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using natural_simps by equivalence
finally show ?thesis .
qed

lemma send_channel_switch:
shows "a \<leftrightarrow> b \<parallel> a \<triangleleft> x \<approx>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> b \<triangleleft> x"
sorry
Expand Down Expand Up @@ -614,32 +642,4 @@ proof -
unfolding tagged_new_channel_def .
qed

lemma inner_forward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> (a \<leftrightarrow> b \<parallel> a \<rightarrow> b) \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x)"
using forward_bridge_absorption by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> (a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x))"
using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> (a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x)"
using inner_unidirectional_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> (a \<leftrightarrow> b \<parallel> a \<rightarrow> b) \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using natural_simps by equivalence
also have "\<dots>\<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using forward_bridge_absorption by equivalence
finally show ?thesis .
qed

lemma inner_backward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> b \<leftrightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x)"
using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> b \<leftrightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using inner_forward_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using natural_simps by equivalence
finally show ?thesis .
qed

end

0 comments on commit a0d9ab5

Please sign in to comment.