Skip to content
This repository has been archived by the owner on Feb 5, 2022. It is now read-only.

Commit

Permalink
Merge branch 'master' into enhancement/fill-holes-relaying-broadcasting
Browse files Browse the repository at this point in the history
  • Loading branch information
javierdiaz72 committed Aug 18, 2019
2 parents 23b9582 + 39d75c3 commit 185254f
Showing 1 changed file with 0 additions and 28 deletions.
28 changes: 0 additions & 28 deletions Isabelle/Chi_Calculus/Communication.thy
Original file line number Diff line number Diff line change
Expand Up @@ -438,34 +438,6 @@ lemma backward_bridge_absorption:
shows "a \<leftrightarrow> b \<parallel> b \<rightarrow> a \<sim>\<^sub>\<flat> a \<leftrightarrow> b"
unfolding bidirectional_bridge_def using natural_simps by equivalence

lemma inner_forward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x) \<sim>\<^sub>\<flat> (a \<leftrightarrow> b \<parallel> a \<rightarrow> b) \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x)"
using forward_bridge_absorption by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> (a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (a \<rightarrow> b \<parallel> P x))"
using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> (a \<rightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x)"
using inner_unidirectional_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> (a \<leftrightarrow> b \<parallel> a \<rightarrow> b) \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using natural_simps by equivalence
also have "\<dots>\<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using forward_bridge_absorption by equivalence
finally show ?thesis .
qed

lemma inner_backward_bridge_redundancy:
shows "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
proof -
have "a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x) \<sim>\<^sub>\<flat> b \<leftrightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. (b \<rightarrow> a \<parallel> P x)"
using natural_simps by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> b \<leftrightarrow> a \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using inner_forward_bridge_redundancy by equivalence
also have "\<dots> \<sim>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> c \<triangleright>\<^sup>\<infinity> x. P x"
using natural_simps by equivalence
finally show ?thesis .
qed

lemma send_channel_switch:
shows "a \<leftrightarrow> b \<parallel> a \<triangleleft> x \<approx>\<^sub>\<flat> a \<leftrightarrow> b \<parallel> b \<triangleleft> x"
sorry
Expand Down

0 comments on commit 185254f

Please sign in to comment.