-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmpu9250.c
215 lines (173 loc) · 6.95 KB
/
mpu9250.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#include "mpu9250.h"
#include "i2c.h"
#include <math.h>
#define DEG2RAD 0.017453293f /*度转弧度*/
#define RAD2DEG 57.29578f /*弧度转度*/
struct MPU9250_t mpu9250;
float Kp = 2.0f; /*比例增益*/
float Ki = 0.1f; /*积分增益*/
float exInt = 0.0f;
float eyInt = 0.0f;
float ezInt = 0.0f; /*积分误差累计*/
static float q0 = 1.0f; /*四元数*/
static float q1 = 0.0f;
static float q2 = 0.0f;
static float q3 = 0.0f;
int yaw,pitch,roll;
volatile uint32_t last_update, now_update;
void MPU9250_Init(void)
{
unsigned char pdata;
//检查设备是否准备好
HAL_I2C_IsDeviceReady(&hi2c1, MPU9250_ADDRESS, 10, HAL_MAX_DELAY);
//检查总线是否准备好
HAL_I2C_GetState(&hi2c1);
pdata=0x80; //复位MPU
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_PWR_MGMT1_REG, 1, &pdata, 1, HAL_MAX_DELAY);
HAL_I2C_IsDeviceReady(&hi2c1, MPU9250_ADDRESS, 10, HAL_MAX_DELAY);
HAL_Delay(500); //复位后需要等待一段时间,等待芯片复位完成
pdata=0x01; //唤醒MPU
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_PWR_MGMT1_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata=3<<3; //设置量程为2000
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_GYRO_CFG_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata=01; //设置加速度传感器量程±4g
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_ACCEL_CFG_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata=0; //陀螺仪采样分频设置
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_SAMPLE_RATE_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata=0; //关闭所有中断
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_INT_EN_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata=0; //关闭FIFO
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_FIFO_EN_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata=0X02; //设置旁路模式,直接读取AK8963磁力计数据
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_INTBP_CFG_REG, 1, &pdata, 1, HAL_MAX_DELAY);
HAL_Delay(10); //需要一段延时让磁力计工作
pdata = 4; //设置MPU9250的数字低通滤波器
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_CFG_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata=0; //使能陀螺仪和加速度工作
HAL_I2C_Mem_Write(&hi2c1, MPU9250_ADDRESS, MPU_PWR_MGMT2_REG, 1, &pdata, 1, HAL_MAX_DELAY);
pdata = 0x01;
HAL_I2C_Mem_Write(&hi2c1, AK8963_ADDRESS, AK8963_CNTL1, 1, &pdata, 1, HAL_MAX_DELAY);
HAL_Delay(10);
}
void GetImuData(void)
{
uint8_t imu_data[14]={0};
uint8_t mag_data[6] = {0};
uint8_t pdata;
short accx,accy,accz;
short gyrox,gyroy,gyroz;
short magx,magy,magz;
float gyro_sensitivity = 16.384f;
int acc_sensitivity = 8192;
static short mag_count = 0;
HAL_I2C_Mem_Read(&hi2c1, MPU9250_ADDRESS, MPU_ACCEL_XOUTH_REG, 1, imu_data, 14, HAL_MAX_DELAY); //读取陀螺仪和加速度计的数据
accx = (imu_data[0]<<8)|imu_data[1];
accy = (imu_data[2]<<8)|imu_data[3];
accz = (imu_data[4]<<8)|imu_data[5];
gyrox = (imu_data[8]<<8)|imu_data[9];
gyroy = (imu_data[10]<<8)|imu_data[11];
gyroz = (imu_data[12]<<8)|imu_data[13];
mpu9250.gyro.x = (float)(gyrox-GYROX_BIAS)/gyro_sensitivity;
mpu9250.gyro.y = (float)(gyroy-GYROY_BIAS)/gyro_sensitivity;
mpu9250.gyro.z = (float)(gyroz-GYROZ_BIAS)/gyro_sensitivity;
mpu9250.acc.x = (float)(accx-ACCX_BIAS)/acc_sensitivity;
mpu9250.acc.y = (float)(accy-ACCY_BIAS)/acc_sensitivity;
mpu9250.acc.z = (float)(accz-ACCZ_BIAS)/acc_sensitivity;
mag_count++;
if(mag_count == 10) //磁力计不能读取太频繁
{
HAL_I2C_Mem_Read(&hi2c1, AK8963_ADDRESS, AK8963_HXL, 1, mag_data, 6, HAL_MAX_DELAY); //读取磁力计数据
magx = (mag_data[0]<<8)|mag_data[1];
magy = (mag_data[2]<<8)|mag_data[3];
magz = (mag_data[4]<<8)|mag_data[5];
mpu9250.mag.x = (float)magy/1000.0f; //磁力计的坐标方位不同
mpu9250.mag.y = (float)magx/1000.0f;
mpu9250.mag.z = -(float)magz/1000.0f;
pdata = 1;
HAL_I2C_Mem_Write(&hi2c1, AK8963_ADDRESS, AK8963_CNTL1, 1, &pdata, 1, HAL_MAX_DELAY); //为下一次读取磁力计数据做准备
mag_count = 0;
}
}
void imuUpdate(struct Axisf acc, struct Axisf gyro, struct Axisf mag)
{
float q0q0 = q0 * q0;
float q1q1 = q1 * q1;
float q2q2 = q2 * q2;
float q3q3 = q3 * q3;
float q0q1 = q0 * q1;
float q0q2 = q0 * q2;
float q0q3 = q0 * q3;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q2q3 = q2 * q3;
float normalise;
float ex, ey, ez;
float halfT;
float hx, hy, hz, bx, bz;
float vx, vy, vz, wx, wy, wz;
now_update = HAL_GetTick(); //单位ms
halfT = ((float)(now_update - last_update) / 2000.0f);
last_update = now_update;
gyro.x *= DEG2RAD; /*度转弧度*/
gyro.y *= DEG2RAD;
gyro.z *= DEG2RAD;
/* 对加速度计数据进行归一化处理 */
if(acc.x != 0 || acc.y != 0 || acc.z != 0)
{
normalise = sqrt(acc.x * acc.x + acc.y * acc.y + acc.z * acc.z);
acc.x /= normalise;
acc.y /= normalise;
acc.z /= normalise;
}
/* 对磁力计数据进行归一化处理 */
if(mag.x != 0 || mag.y != 0 || mag.z != 0)
{
normalise = sqrt(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z);
mag.x /= normalise;
mag.y /= normalise;
mag.z /= normalise;
}
/* 计算磁力计投影到物体坐标上的各个分量 */
hx = 2.0f*mag.x*(0.5f - q2q2 - q3q3) + 2.0f*mag.y*(q1q2 - q0q3) + 2.0f*mag.z*(q1q3 + q0q2);
hy = 2.0f*mag.x*(q1q2 + q0q3) + 2.0f*mag.y*(0.5f - q1q1 - q3q3) + 2.0f*mag.z*(q2q3 - q0q1);
hz = 2.0f*mag.x*(q1q3 - q0q2) + 2.0f*mag.y*(q2q3 + q0q1) + 2.0f*mag.z*(0.5f - q1q1 - q2q2);
bx = sqrt((hx*hx) + (hy*hy));
bz = hz;
/* 计算加速度计投影到物体坐标上的各个分量 */
vx = 2.0f*(q1q3 - q0q2);
vy = 2.0f*(q0q1 + q2q3);
vz = q0q0 - q1q1 - q2q2 + q3q3;
/* 处理过后的磁力计新分量 */
wx = 2.0f*bx*(0.5f - q2q2 - q3q3) + 2.0f*bz*(q1q3 - q0q2);
wy = 2.0f*bx*(q1q2 - q0q3) + 2.0f*bz*(q0q1 + q2q3);
wz = 2.0f*bx*(q0q2 + q1q3) + 2.0f*bz*(0.5f - q1q1 - q2q2);
/* 叉积误差累计,用以修正陀螺仪数据 */
ex = (acc.y*vz - acc.z*vy) + (mag.y*wz - mag.z*wy);
ey = (acc.z*vx - acc.x*vz) + (mag.z*wx - mag.x*wz);
ez = (acc.x*vy - acc.y*vx) + (mag.x*wy - mag.y*wx);
/* 互补滤波 PI */
exInt += ex * Ki * halfT;
eyInt += ey * Ki * halfT;
ezInt += ez * Ki * halfT;
gyro.x += Kp*ex + exInt;
gyro.y += Kp*ey + eyInt;
gyro.z += Kp*ez + ezInt;
/* 使用一阶龙格库塔更新四元数 */
q0 += (-q1 * gyro.x - q2 * gyro.y - q3 * gyro.z) * halfT;
q1 += ( q0 * gyro.x + q2 * gyro.z - q3 * gyro.y) * halfT;
q2 += ( q0 * gyro.y - q1 * gyro.z + q3 * gyro.x) * halfT;
q3 += ( q0 * gyro.z + q1 * gyro.y - q2 * gyro.x) * halfT;
/* 对四元数进行归一化处理 */
normalise = sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 /= normalise;
q1 /= normalise;
q2 /= normalise;
q3 /= normalise;
/* 由四元数求解欧拉角 */
mpu9250.attitude.x = -asinf(-2*q1*q3 + 2*q0*q2) * RAD2DEG; //pitch
mpu9250.attitude.y = atan2f(2*q2*q3 + 2*q0*q1, -2*q1*q1 - 2*q2*q2 + 1) * RAD2DEG; //roll
mpu9250.attitude.z = atan2f(2*q1*q2 + 2*q0*q3, -2*q2*q2 - 2*q3*q3 + 1) * RAD2DEG; //yaw
yaw = mpu9250.attitude.z*100; //用于J-Scope读取
pitch = mpu9250.attitude.x*100;
roll = mpu9250.attitude.y*100;
}