Skip to content

Commit

Permalink
Merge pull request #1 from imanuelcostigan/master
Browse files Browse the repository at this point in the history
updating from upstream
  • Loading branch information
farzadwp authored Nov 27, 2019
2 parents 6442dca + 4c9e3e0 commit 688e072
Show file tree
Hide file tree
Showing 90 changed files with 7,623 additions and 2,170 deletions.
70 changes: 70 additions & 0 deletions .github/workflows/main.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
on: [push, pull_request]

name: R-CMD-check

jobs:
R-CMD-check:
runs-on: ${{ matrix.config.os }}
name: ${{ matrix.config.os }} (${{ matrix.config.r }})
strategy:
fail-fast: true
matrix:
config:
- { os: windows-latest, r: '3.6', args: "--no-manual" }
- { os: windows-latest, r: 'devel', args: "--no-manual" }
- { os: macOS-latest, r: '3.5' }
- { os: macOS-latest, r: '3.6' }
- { os: ubuntu-latest, r: '3.6', cran: "https://demo.rstudiopm.com/all/__linux__/bionic/latest", args: "--no-manual" }
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
CRAN: ${{ matrix.config.cran }}
steps:
- name: Check out repo
uses: actions/checkout@v1
- name: Setup R
uses: r-lib/actions/setup-r@master
with:
r-version: ${{ matrix.config.r }}
- name: Setup pandoc
uses: r-lib/actions/setup-pandoc@master
- name: Setup TinyTeX
uses: r-lib/actions/setup-tinytex@master
if: contains(matrix.config.args, 'no-manual') == false
- name: Cache R packages
uses: actions/cache@v1
with:
path: ${{ env.R_LIBS_USER }}
key: ${{ runner.os }}-r-${{ matrix.config.r }}-${{ hashFiles('DESCRIPTION') }}
- name: Install system dependencies
if: runner.os == 'Linux'
env:
RHUB_PLATFORM: linux-x86_64-ubuntu-gcc
run: |
Rscript -e "install.packages('remotes')"
Rscript -e "remotes::install_github('r-hub/sysreqs')"
sysreqs=$(Rscript -e "cat(sysreqs::sysreq_commands('DESCRIPTION'))")
sudo -s eval "$sysreqs"
- name: Install dependencies
run: |
Rscript -e "install.packages('remotes')"
Rscript -e "remotes::install_deps(dependencies = TRUE)"
- name: Install check tools
run: Rscript -e "remotes::install_cran('rcmdcheck')"
- name: R session info # sessioninfo is a reverse dep of {{rcmdcheck}}
run: Rscript -e "sessioninfo::platform_info()"
- name: Check
run: Rscript -e "rcmdcheck::rcmdcheck(args = '${{ matrix.config.args }}', error_on = 'warning', check_dir = 'check')"
- name: Make check directory
if: failure()
run: mkdir -p check
- name: Upload check results
if: failure()
uses: actions/upload-artifact@v1
with:
name: ${{ runner.os }}-r${{ matrix.config.r }}-results
path: check
- name: Test coverage
if: matrix.config.os == 'macOS-latest' && matrix.config.r == '3.6'
run: |
Rscript -e 'remotes::install_github("r-lib/covr@gh-actions")'
Rscript -e 'covr::codecov(token = "${{secrets.CODECOV_TOKEN}}")'
20 changes: 0 additions & 20 deletions .travis.yml

This file was deleted.

5 changes: 5 additions & 0 deletions NEWS
Original file line number Diff line number Diff line change
@@ -1,5 +1,10 @@
# Version 0.3.99

NEW:

- `VolQuotes()` and `VolSurface()` allow you to create volatility surfaces. The latter can be interpolated by a two-dimensional interpolator via `LinearCubicTimeVarInterpolation()` which uses linear interpolation in the maturity dimension (x), cubic splines in the smile dimension (y) for implied volatility squared (variance, z).
- Implemented a `VolSurface` method for `interpolate()`.

IMPROVED:

- Rebuilt documentation using newer version of `roxygen2`
Expand Down
20 changes: 13 additions & 7 deletions R/generic-methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -54,20 +54,26 @@ to_maturity <- function(dates, index) UseMethod("to_maturity", index)
#' @rdname indexshifters
#' @export
to_reset.default <- function(dates, index) {
fmdates::shift(dates, -index$spot_lag,
index$day_convention, index$calendar, index$is_eom)
fmdates::shift(
dates, -index$spot_lag,
index$day_convention, index$calendar, index$is_eom
)
}
#' @rdname indexshifters
#' @export
to_value.default <- function(dates, index) {
fmdates::shift(dates, index$spot_lag,
index$day_convention, index$calendar, index$is_eom)
fmdates::shift(
dates, index$spot_lag,
index$day_convention, index$calendar, index$is_eom
)
}
#' @rdname indexshifters
#' @export
to_maturity.default <- function(dates, index) {
fmdates::shift(dates, index$tenor,
index$day_convention, c(index$pfc_calendar, index$calendar), index$is_eom)
fmdates::shift(
dates, index$tenor,
index$day_convention, c(index$pfc_calendar, index$calendar), index$is_eom
)
}


Expand Down Expand Up @@ -126,4 +132,4 @@ interpolate_dfs <- function(x, from, to, ...) UseMethod("interpolate_dfs")

#' @export
#' @rdname interpolate_dfs
interpolate_fwds <- function(x, from, to, ...) UseMethod("interpolate_fwds")
interpolate_fwds <- function(x, from, to, ...) UseMethod("interpolate_fwds")
246 changes: 246 additions & 0 deletions R/interpolation-class.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@

# Interpolation -----------------------------------------------------------

#' Interpolation
#'
#' These are lightweight interpolation classes that are used to specify
#' typical financial market interpolation schemes. Their behaviour is
#' dictated by the object in which they defined.
#'
#' @return an object that inherits from the `Interpolation` class.
#' @examples
#' ConstantInterpolation()
#' @name Interpolation
NULL

Interpolation <- function(method, what) {
scheme <- paste0(method, "_", what)
prefix <- switch(scheme,
constant_zeros = "Constant",
constant_forwards = "LogDF",
linear_zeros = "Linear",
natural_cubic_zeros = "Cubic",
linear_cubic_time_var = "Linear_Cubic"
)
structure(list(),
class = c(paste0(prefix, "Interpolation"), "Interpolation")
)
}

#' @rdname Interpolation
#' @export
ConstantInterpolation <- function() Interpolation("constant", "zeros")
#' @rdname Interpolation
#' @export
LogDFInterpolation <- function() Interpolation("constant", "forwards")
#' @rdname Interpolation
#' @export
LinearInterpolation <- function() Interpolation("linear", "zeros")
#' @rdname Interpolation
#' @export
CubicInterpolation <- function() Interpolation("natural_cubic", "zeros")
#' @rdname Interpolation
#' @export
LinearCubicTimeVarInterpolation <- function() Interpolation("linear_cubic", "time_var")

#' Check Interpolation class
#'
#' These methods check whether an interpolation is of a particular scheme.
#'
#' @param x an object
#' @return a logical flag
#' @examples
#' is.Interpolation(CubicInterpolation())
#' is.CubicInterpolation(CubicInterpolation())
#' @export
is.Interpolation <- function(x) inherits(x, "Interpolation")
check_interpolation <- function(prefix) {
function(x) methods::is(x, paste0(prefix, "Interpolation"))
}
#' @rdname is.Interpolation
#' @export
is.ConstantInterpolation <- check_interpolation("Constant")
#' @rdname is.Interpolation
#' @export
is.LogDFInterpolation <- check_interpolation("LogDF")
#' @rdname is.Interpolation
#' @export
is.LinearInterpolation <- check_interpolation("Linear")
#' @rdname is.Interpolation
#' @export
is.CubicInterpolation <- check_interpolation("Cubic")
#' @rdname is.Interpolation
#' @export
is.LinearCubicTimeVarInterpolation <- check_interpolation("Linear_Cubic")
#' @export
format.Interpolation <- function(x, ...) paste0("<", class(x)[1], ">")
#' @export
print.Interpolation <- function(x, ...) cat(format(x), "\n")

#' Interpolate a `ZeroCurve`
#'
#' There are two key interpolation schemes available in the `stats` package:
#' constant and linear interpolation via [stats::approxfun()] and
#' spline interpolation via [stats::splinefun()]. The `interpolate()` method
#' is a simple wrapper around these methods that are useful for the purposes
#' of interpolation financial market objects like zero coupon interest rate
#' curves.
#'
#' @param x a `ZeroCurve` object
#' @param at a non-negative numeric vector representing the years at which to
#' interpolate the zero curve
#' @param ... unused in this method
#' @return a numeric vector of zero rates (continuously compounded, act/365)
#' @examples
#' zc <- build_zero_curve(LogDFInterpolation())
#' interpolate(zc, c(1.5, 3))
#' @export
#' @family interpolate functions
interpolate.ZeroCurve <- function(x, at, ...) {
assertthat::assert_that(is.numeric(at), all(at >= 0))
x$interpolator(at)
}

#' @importFrom tibble type_sum
#' @export
type_sum.ZeroCurve <- function(x) {
"ZeroCurve"
}



# Curve methods -----------------------------------------------------------

#' @rdname interpolate_zeros
#' @export
interpolate_zeros.ZeroCurve <- function(x, at, compounding = NULL, day_basis = NULL, ...) {
assertthat::assert_that(
is.ZeroCurve(x),
assertthat::is.date(at),
is.null(compounding) || is_valid_compounding(compounding),
is.null(day_basis) || fmdates::is_valid_day_basis(day_basis)
)

tt <- year_frac(x$reference_date, at, x$day_basis)
zr <- InterestRate(interpolate(x, tt), x$compounding, x$day_basis)
if (is.null(compounding) && is.null(day_basis)) {
return(zr)
} else {
as_InterestRate(zr, compounding = compounding, day_basis = day_basis)
}
}

#' @rdname interpolate_dfs
#' @export
interpolate_fwds.ZeroCurve <- function(x, from, to, ...) {
assertthat::assert_that(
is.ZeroCurve(x),
assertthat::is.date(from),
assertthat::is.date(to),
all(from < to)
)
forward_dfs <- interpolate_dfs(x, from, to, ...)
as_InterestRate(forward_dfs, 0, x$day_basis)
}

#' @rdname interpolate_dfs
#' @export
interpolate_dfs.ZeroCurve <- function(x, from, to, ...) {
assertthat::assert_that(
is.ZeroCurve(x),
assertthat::is.date(from),
assertthat::is.date(to),
all(from <= to)
)
r1 <- interpolate_zeros(x, from, ...)
r2 <- interpolate_zeros(x, to, ...)
df_start <- as_DiscountFactor(r1, x$reference_date, from)
df_end <- as_DiscountFactor(r2, x$reference_date, to)
df_end / df_start
}


#' Linear-Cubic Interpolation
#'
#' This function performs a two-dimentional interpolation linear on the first dimension
#' and natural cubic spline on the second dimension.
#' @param interp_data `data.frame` object with three vectors x, y and z
#' @param x0 numeric vector containing the points at which to perform the interpolation along the first dimension
#' @param y0 numeric vector containing the points at which to perform the interpolation along the second dimension
#' @keywords internal

linear_cubic_interp <- function(interp_data, x0, y0) {
assertthat::assert_that(
length(x0) == length(y0)
)

res <- rep(NA, length(x0))

for (i in seq_along(x0)) {
xx <- x0[i]
yy <- y0[i]
smile <- rep(NA, length(unique(interp_data$y)))

for (k in 1:length(smile)) {
g <- stats::approxfun(
x = unique(interp_data$x),
y = interp_data$z[(1 + (k - 1) *
length(unique(interp_data$x))):(k * length(unique(interp_data$x)))],
method = "linear",
rule = 2
)
smile[k] <- g(xx)
}
if (yy >= min(interp_data$y) & yy <= max(interp_data$y)) {
interpolated_value <- stats::spline(
x = unique(interp_data$y),
y = smile, method = "natural", xout = yy
)$y
}
if (yy < min(interp_data$y)) {
interpolated_value <- smile[1]
}
if (yy > max(interp_data$y)) {
interpolated_value <- utils::tail(smile, 1)
}
res[i] <- interpolated_value
}
res
}



# VolSurface methods --------------------------------


#' Interpolate a `VolSurface` object.
#'
#' This method is used to interpolate a `VolSurface` object at multiple points of
#' the plane. The interpolation depends on the type of the surface, if the vols are
#' given by strikes, delta, moneyness.
#'
#' @param x object of class `VolSurface` to be interpolated.
#' @param at indicates the coordinates at which the interpolation is performed.
#' `at` should be given as a [tibble::tibble()] with two column names named
#' `maturity` and `smile`. e.g. list(maturity = c(1, 2), smile = c(72, 92)).
#' @param ... unused in this model.
#' @return `numeric` vector with length equal to the number of rows of `at`.
#' @examples
#' x <- build_vol_surface()
#' at <- tibble::tibble(
#' maturity = c(as.Date("2020-03-31"), as.Date("2021-03-31")),
#' smile = c(40, 80)
#' )
#' interpolate(x, at)
#' @family interpolate functions
#' @export

interpolate.VolSurface <- function(x, at, ...) {
assertthat::assert_that(
tibble::is_tibble(at),
setequal(names(at), c("maturity", "smile")),
assertthat::is.date(at$maturity),
is.numeric(at$smile)
)
x$interpolator(at)
}
Loading

0 comments on commit 688e072

Please sign in to comment.