Skip to content

ikrishanaa/knn_classification_project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

K-Nearest Neighbors (KNN) Classification Project

Objective

Implement KNN classifier, experiment with different K values, evaluate model, and visualize decision boundaries.

Dataset

  • Place your CSV dataset inside the data/ folder.
  • By default, if no dataset is provided, the script uses the Iris dataset from scikit-learn.

Features

  • Train/Test split
  • Data normalization
  • KNN training with multiple K values
  • Accuracy and confusion matrix evaluation
  • Decision boundary visualization (2D)
  • Best K selection

Folder Structure

knn_classification_project/
│
├── data/                 # Place dataset.csv here
├── outputs/              # Generated plots & metrics
├── src/                  # Python code
│   └── knn_model.py
├── README.md
└── requirements.txt

How to Run

  1. Create virtual environment (optional but recommended):
python -m venv venv 
venv\Scripts\activate   
  1. Install dependencies:
pip install -r requirements.txt
  1. Run script (default dataset):
python src/knn_model.py
  1. Run script with your own dataset:
python src/knn_model.py --csv data/your_dataset.csv --target target_column_name --features col1 col2

Note: Decision boundary visualization works only if you specify exactly 2 features.

Outputs

  • outputs/accuracy_vs_k.png
  • outputs/confusion_matrix.png
  • outputs/decision_boundary.png (if 2D features)
  • outputs/metrics.json

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages