Skip to content

Commit

Permalink
Speed improvements for discrete
Browse files Browse the repository at this point in the history
  • Loading branch information
cheerfulstoic committed Apr 5, 2017
1 parent 1f5b596 commit 21b19e9
Showing 1 changed file with 13 additions and 9 deletions.
22 changes: 13 additions & 9 deletions lib/decisiontree/id3_tree.rb
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@
### Copyright (c) 2007 Ilya Grigorik <ilya AT igvita DOT com>
### Modifed at 2007 by José Ignacio Fernández <joseignacio.fernandez AT gmail DOT com>

require 'set'

module DecisionTree
Node = Struct.new(:attribute, :threshold, :gain)

Expand All @@ -28,7 +30,7 @@ def train(data = @data, attributes = @attributes, default = @default)
end

data2 = data2.map do |key, val|
key + [val.sort_by { |_k, v| v }.last.first]
key + [val.sort_by { |_, v| v }.last.first]
end

@tree = id3_train(data2, attributes, default)
Expand All @@ -41,9 +43,9 @@ def type(attribute)
def fitness_for(attribute)
case type(attribute)
when :discrete
proc { |a, b, c| id3_discrete(a, b, c) }
proc { |*args| id3_discrete(*args) }
when :continuous
proc { |a, b, c| id3_continuous(a, b, c) }
proc { |*args| id3_continuous(*args) }
end
end

Expand All @@ -66,14 +68,13 @@ def id3_train(data, attributes, default, _used={})
@used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold]
tree, l = {best => {}}, ['>=', '<']

fitness = fitness_for(best.attribute)
case type(best.attribute)
when :continuous
partitioned_data = data.partition do |d|
d[attributes.index(best.attribute)] >= best.threshold
end
partitioned_data.each_with_index do |examples, i|
tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0), &fitness)
tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0))
end
when :discrete
values = data.collect { |d| d[attributes.index(best.attribute)] }.uniq.sort
Expand All @@ -83,7 +84,7 @@ def id3_train(data, attributes, default, _used={})
end
end
partitions.each_with_index do |examples, i|
tree[best][values[i]] = id3_train(examples, attributes - [values[i]], (data.classification.mode rescue 0), &fitness)
tree[best][values[i]] = id3_train(examples, attributes - [values[i]], (data.classification.mode rescue 0))
end
end

Expand Down Expand Up @@ -116,11 +117,14 @@ def id3_continuous(data, attributes, attribute)

# ID3 for discrete label cases
def id3_discrete(data, attributes, attribute)
values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort
partitions = values.collect { |val| data.select { |d| d[attributes.index(attribute)] == val } }
index = attributes.index(attribute)

values = Set.new
data.each { |d| values << d[index] }
partitions = values.to_a.sort.collect { |val| data.select { |d| d[index] == val } }
remainder = partitions.collect { |p| (p.size.to_f / data.size) * p.classification.entropy }.inject(0) { |a, e| e += a }

[data.classification.entropy - remainder, attributes.index(attribute)]
[data.classification.entropy - remainder, index]
end

def predict(test)
Expand Down

0 comments on commit 21b19e9

Please sign in to comment.