- This code is for horizontal OD based on Detectron2. The oriented OD code is released at E2E-MFD.
Step 1: Clone the E2E-MFD repository:
To get started, first clone the E2E-MFD repository and navigate to the project directory:
git clone https://github.com/icey-zhang/E2E-MFD-HOD.git
cd E2E-MFD-HOD
Step 2: Environment Setup:
E2E-MFD recommends setting up a conda environment and installing dependencies via pip. Use the following commands to set up your environment:
Create and activate a new conda environment
conda create -n E2E-MFD python=3.9.16
conda activate E2E-MFD
you can download the dataset and then run
python tools/get_data.py
python txt2xml.py
Training data and test data are divided in the path
EfficientMFD
├── datasets
│ ├── M3FD
│ │ ├── ImageSets
│ │ │ ├── trainval.txt
│ │ │ ├── test.txt
│ │ ├── Annotations
│ │ │ ├── 00000.xml
│ │ │ ├── 00001.xml
│ │ │ ├── ......
│ │ ├── JPEGImages
│ │ │ ├── 00000.mat
│ │ │ ├── 00001.mat
│ │ │ ├── ......
│ │ ├── M3FD_Fusion
│ │ │ ├── ir
│ │ │ ├── vi
│ │ ├── M3FD_Detection
│ │ │ ├── ir
│ │ │ ├── vi
Use the config file with this.
python train_net.py
python test.py
python save_test_fusion_V.py
If you have any questions, please contact mingxiangcao@stu.xidian.edu.cn.