Minimal code and examples for inferencing Sapiens foundation human models in Pytorch
- Make it easy to run the models by creating a
SapiensPredictorclass that allows to run multiple tasks simultaneously - Add several examples to run the models on images, videos, and with a webcam in real-time.
- Download models automatically from HuggigFace if not available locally.
- Add a script for ONNX export. However, ONNX inference is not recommended due to the slow speed.
- Added Object Detection to allow the model to be run for each detected person. However, this mode is disabled as it produces the worst results.
Caution
- Use 1B models, since the accuracy of lower models is not good (especially for segmentation)
- Exported ONNX models are too slow.
- Input sizes other than 768x1024 don't produce good results.
- Running Sapiens models on a cropped person produces worse results, even if you crop a wider rectangle around the person.
pip install sapiens-infereceOr, clone this repository:
git clone https://github.com/ibaiGorordo/Sapiens-Pytorch-Inference.git
cd Sapiens-Pytorch-Inference
pip install -r requirements.txtimport cv2
from imread_from_url import imread_from_url
from sapiens_inference import SapiensPredictor, SapiensConfig, SapiensDepthType, SapiensNormalType
# Load the model
config = SapiensConfig()
config.depth_type = SapiensDepthType.DEPTH_03B # Disabled by default
config.normal_type = SapiensNormalType.NORMAL_1B # Disabled by default
predictor = SapiensPredictor(config)
# Load the image
img = imread_from_url("https://github.com/ibaiGorordo/Sapiens-Pytorch-Inference/blob/assets/test2.png?raw=true")
# Estimate the maps
result = predictor(img)
cv2.namedWindow("Combined", cv2.WINDOW_NORMAL)
cv2.imshow("Combined", result)
cv2.waitKey(0)The SapiensPredictor class allows to run multiple tasks simultaneously. It has the following methods:
SapiensPredictor(config: SapiensConfig)- Load the model with the specified configuration.__call__(img: np.ndarray) -> np.ndarray- Estimate the maps for the input image.
The SapiensConfig class allows to configure the model. It has the following attributes:
dtype: torch.dtype- Data type to use. Default:torch.float32.device: torch.device- Device to use. Default:cudaif available, otherwisecpu.depth_type: SapiensDepthType- Depth model to use. Options:OFF,DEPTH_03B,DEPTH_06B,DEPTH_1B,DEPTH_2B. Default:OFF.normal_type: SapiensNormalType- Normal model to use. Options:OFF,NORMAL_03B,NORMAL_06B,NORMAL_1B,NORMAL_2B. Default:OFF.segmentation_type: SapiensSegmentationType- Segmentation model to use (Always enabled for the mask). Options:SEGMENTATION_03B,SEGMENTATION_06B,SEGMENTATION_1B. Default:SEGMENTATION_1B.detector_config: DetectorConfig- Configuration for the object detector. Default: {model_path: str = "models/yolov8m.pt",person_id: int = 0,confidence: float = 0.25}. Disabled as it produces worst results.minimum_person_height: float- Minimum height ratio of the person to detect. Default:0.5f(50%). Not used if the object detector is disabled.
- Image Sapiens Predictor (Normal, Depth, Segmentation):
python image_predictor.py
- Video Sapiens Predictor (Normal, Depth, Segmentation): (https://youtu.be/hOyrnkQz1NE?si=jC76W7AY3zJnZhH4)
python video_predictor.py
- Webcam Sapiens Predictor (Normal, Depth, Segmentation):
python webcam_predictor.py
- Image Normal Estimation:
python image_normal_estimation.py
- Image Human Part Segmentation:
python image_segmentation.py
- Image Pose Estimation
python image_pose_estimation.py
- Video Normal Estimation:
python video_normal_estimation.py
- Video Human Part Segmentation:
python video_segmentation.py
- Webcam Normal Estimation:
python webcam_normal_estimation.py
- Webcam Human Part Segmentation:
python webcam_segmentation.py
To export the model to ONNX, run the following script:
python export_onnx.py seg03bThe available models are seg03b, seg06b, seg1b, depth03b, depth06b, depth1b, depth2b, normal03b, normal06b, normal1b, normal2b.
The original models are available at HuggingFace: https://huggingface.co/facebook/sapiens/tree/main/sapiens_lite_host
- License: Creative Commons Attribution-NonCommercial 4.0 International (https://github.com/facebookresearch/sapiens/blob/main/LICENSE)
- Sapiens: https://github.com/facebookresearch/sapiens
- Sapiens Lite: https://github.com/facebookresearch/sapiens/tree/main/lite
- HuggingFace Model: https://huggingface.co/facebook/sapiens

