-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e34072a
commit 1ad1642
Showing
1 changed file
with
124 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import sys | ||
from sklearn.model_selection import cross_val_score | ||
from scipy.stats import mode | ||
from linearDiscriminantAnalysis import mergePredictions | ||
|
||
sys.path.insert(0,'../lib/seqlearn/') | ||
|
||
from seqlearn.perceptron import StructuredPerceptron | ||
|
||
|
||
|
||
def perceptronTest(input_data, test, actual, actual8): | ||
model = StructuredPerceptron(verbose=False, random_state=37, max_iter=1000) | ||
|
||
l = 9*len(input_data)/10 - 1 | ||
scores = cross_val_score(model, input_data.iloc[:,:-1], input_data.iloc[:,-1], cv = 10, fit_params={'lengths':[l]}) | ||
|
||
print 'Cross Validation Accuracy = ' + str(scores.mean()) | ||
|
||
model.fit(input_data.iloc[:,:-1], input_data.iloc[:,-1], [len(input_data)]) | ||
pred = model.predict(test) | ||
accuracy = sum(pred == actual)/float(len(actual)) | ||
pred8 = mergePredictions(pred, 8) | ||
accuracy8 = sum(pred8 == actual8)/float(len(actual8)) | ||
print 'Test Accuracy for the subject is = ' + str(accuracy) | ||
print 'Test Accuracy for the subject at step 8 is = ' + str(accuracy8) | ||
|
||
|
||
def mainRawData(): | ||
#Loading Input data (training) | ||
d1 = pd.read_csv('../data/training/train_subject1_psd01.csv',header=None) | ||
d2 = pd.read_csv('../data/training/train_subject1_psd02.csv',header=None) | ||
d3 = pd.read_csv('../data/training/train_subject1_psd03.csv',header=None) | ||
input_data_s1 = pd.concat([d1, d2, d3], axis=0) | ||
|
||
d1 = pd.read_csv('../data/training/train_subject2_psd01.csv',header=None) | ||
d2 = pd.read_csv('../data/training/train_subject2_psd02.csv',header=None) | ||
d3 = pd.read_csv('../data/training/train_subject2_psd03.csv',header=None) | ||
input_data_s2 = pd.concat([d1, d2, d3], axis=0) | ||
|
||
d1 = pd.read_csv('../data/training/train_subject3_psd01.csv',header=None) | ||
d2 = pd.read_csv('../data/training/train_subject3_psd02.csv',header=None) | ||
d3 = pd.read_csv('../data/training/train_subject3_psd03.csv',header=None) | ||
input_data_s3 = pd.concat([d1, d2, d3], axis=0) | ||
|
||
#Loading Test data (all subjects) | ||
test_s1 = pd.read_csv('../data/testing/test_subject1_psd04.csv', header=None) | ||
actual_s1 = pd.read_csv('../data/testing/ActualLables/labels_subject1_psd.csv', header=None) | ||
actual8_s1 = pd.read_csv('../data/testing/ActualLables/labels8_subject1_psd.csv', header=None) | ||
actual_s1 = actual_s1[0] | ||
actual8_s1 = actual8_s1[0] | ||
|
||
test_s2 = pd.read_csv('../data/testing/test_subject2_psd04.csv', header=None) | ||
actual_s2 = pd.read_csv('../data/testing/ActualLables/labels_subject2_psd.csv', header=None) | ||
actual8_s2 = pd.read_csv('../data/testing/ActualLables/labels8_subject2_psd.csv', header=None) | ||
actual_s2 = actual_s2[0] | ||
actual8_s2 = actual8_s2[0] | ||
|
||
test_s3 = pd.read_csv('../data/testing/test_subject3_psd04.csv', header=None) | ||
actual_s3 = pd.read_csv('../data/testing/ActualLables/labels_subject3_psd.csv', header=None) | ||
actual8_s3 = pd.read_csv('../data/testing/ActualLables/labels8_subject3_psd.csv', header=None) | ||
actual_s3 = actual_s3[0] | ||
actual8_s3 = actual8_s3[0] | ||
|
||
perceptronTest(input_data_s1, test_s1, actual_s1, actual8_s1) | ||
perceptronTest(input_data_s2, test_s2, actual_s2, actual8_s2) | ||
perceptronTest(input_data_s3, test_s3, actual_s3, actual8_s3) | ||
|
||
# Results: | ||
# Cross Validation Accuracy = 0.71953708592 | ||
# Test Accuracy for the subject is = 0.768835616438 | ||
# Test Accuracy for the subject at step 8 is = 0.762557077626 | ||
# Cross Validation Accuracy = 0.571821113391 | ||
# Test Accuracy for the subject is = 0.616359447005 | ||
# Test Accuracy for the subject at step 8 is = 0.612903225806 | ||
# Cross Validation Accuracy = 0.383837959864 | ||
# Test Accuracy for the subject is = 0.406823394495 | ||
# Test Accuracy for the subject at step 8 is = 0.389908256881 | ||
|
||
def mainPCAData(): | ||
input_data_s1 = pd.read_csv('../data/training/pca_data_v2/pca_subject1.csv') | ||
|
||
input_data_s2 = pd.read_csv('../data/training/pca_data_v2/pca_subject2.csv') | ||
|
||
input_data_s3 = pd.read_csv('../data/training/pca_data_v2/pca_subject3.csv') | ||
|
||
#Loading Test data (all subjects) | ||
test_s1 = pd.read_csv('../data/testing/pca_data_v2/pca_subject1.csv') | ||
actual_s1 = pd.read_csv('../data/testing/ActualLables/labels_subject1_psd.csv', header=None) | ||
actual8_s1 = pd.read_csv('../data/testing/ActualLables/labels8_subject1_psd.csv', header=None) | ||
actual_s1 = actual_s1[0] | ||
actual8_s1 = actual8_s1[0] | ||
|
||
test_s2 = pd.read_csv('../data/testing/pca_data_v2/pca_subject2.csv') | ||
actual_s2 = pd.read_csv('../data/testing/ActualLables/labels_subject2_psd.csv', header=None) | ||
actual8_s2 = pd.read_csv('../data/testing/ActualLables/labels8_subject2_psd.csv', header=None) | ||
actual_s2 = actual_s2[0] | ||
actual8_s2 = actual8_s2[0] | ||
|
||
test_s3 = pd.read_csv('../data/testing/pca_data_v2/pca_subject3.csv') | ||
actual_s3 = pd.read_csv('../data/testing/ActualLables/labels_subject3_psd.csv', header=None) | ||
actual8_s3 = pd.read_csv('../data/testing/ActualLables/labels8_subject3_psd.csv', header=None) | ||
actual_s3 = actual_s3[0] | ||
actual8_s3 = actual8_s3[0] | ||
|
||
perceptronTest(input_data_s1, test_s1, actual_s1, actual8_s1) | ||
perceptronTest(input_data_s2, test_s2, actual_s2, actual8_s2) | ||
perceptronTest(input_data_s3, test_s3, actual_s3, actual8_s3) | ||
|
||
# Results: | ||
# Cross Validation Accuracy = 0.870042431112 | ||
# Test Accuracy for the subject is = 0.882705479452 | ||
# Test Accuracy for the subject at step 8 is = 0.876712328767 | ||
# Cross Validation Accuracy = 0.754951838489 | ||
# Test Accuracy for the subject is = 0.802131336406 | ||
# Test Accuracy for the subject at step 8 is = 0.797235023041 | ||
# Cross Validation Accuracy = 0.523014108367 | ||
# Test Accuracy for the subject is = 0.579128440367 | ||
# Test Accuracy for the subject at step 8 is = 0.584862385321 | ||
|
||
if __name__ == '__main__': | ||
mainRawData() |