-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
90 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
module BinarySearchTree(BSTree(Void,BSNode), subTree, Tree(Node), count, labels, height) where | ||
|
||
{- Binary Search Trees | ||
Void represents an empty tree. BSNode l x r represents a tree with | ||
left subtree l, root label x, and right subtree r. | ||
INVARIANT: in every tree of the form BSNode l x r, all labels in l | ||
are < x, and all labels in r are > x. | ||
-} | ||
data BSTree = Void | BSNode BSTree Integer BSTree -- do not modify this line | ||
|
||
{- subTree a b t | ||
Takes two integers and the Binary Search Tree | ||
RETURNS: The sub-tree where the nodes are greater than or equal to a but smaller than b | ||
EXAMPLES: subTree 5 8 (BSNode (BSNode (BSNode Void 0 (BSNode Void 2 Void)) | ||
3 | ||
(BSNode Void 5 Void)) | ||
6 | ||
(BSNode Void | ||
7 | ||
(BSNode Void 8 (BSNode Void 9 Void)))) == BSNode (BSNode Void 5 Void) 6 (BSNode Void 7 Void) | ||
-} | ||
subTree :: Integer -> Integer -> BSTree -> BSTree | ||
|
||
subTree a b (Void) = Void | ||
subTree a b (BSNode Void x Void) | ||
| x >= a && x < b = BSNode Void x Void | ||
| otherwise = Void | ||
|
||
subTree a b (BSNode Void x r) | ||
| x >= a && x < b = subTree a b (BSNode Void x (subTree a b r)) | ||
| otherwise = subTree a b r | ||
|
||
subTree a b (BSNode l x Void) | ||
| x >= a && x < b = subTree a b (BSNode (subTree a b l) x Void) | ||
| otherwise = subTree a b l | ||
|
||
subTree a b (BSNode l x r) | ||
| x >= a && x < b = BSNode (subTree a b l) x (subTree a b r) | ||
| otherwise = subTree a b (BSNode (subTree a b l) x (subTree a b r)) | ||
|
||
|
||
data Tree a = Node a [Tree a] | ||
|
||
tree1 = Node "hej" [] | ||
tree2 = Node 1 [Node 2 []] | ||
tree3 = Node "hej" [Node "hello" [Node "ni hao" [Node "ahoj" []]], | ||
Node "bonjour" [Node "privet" [Node "guten tag" []]], | ||
Node "namaste" [Node "ciao" [Node "as-salam alaykom" [Node "saluton" [Node "hei" [Node "halo" []]], | ||
Node "kon-nichiwa" [Node "an-nyong ha-se-yo " [Node "ola" []]], | ||
Node "sa-wat-dee" [Node "selam" [Node "jambo" []]]]]]] | ||
|
||
{- count t | ||
Takes a tree of type Tree a | ||
RETURNS: The number of nodes of that tree | ||
EXAMPLES: count (Node "hej" []) == 1 | ||
count (Node 1 [Node 2 []]) == 2 | ||
-} | ||
count :: Tree a -> Integer | ||
count (Node _ []) = 1 | ||
count (Node r (n:xn)) = count (n) + count (Node r xn) | ||
|
||
{- labels t | ||
Takes a tree of type Tree a | ||
RETURNS: The list of all node labels of that tree | ||
EXAMPLES: labels (Node "hej" []) == ["hej"] | ||
labels (Node 1 [Node 2 []]) == [1, 2] | ||
-} | ||
labels :: Tree a -> [a] | ||
labels (Node n []) = [n] | ||
labels (Node n xn) = n : concatMap labels xn | ||
|
||
{- height t | ||
Takes a tree of type Tree a | ||
RETURNS: The height of tree | ||
EXAMPLES: height (Node "hej" []) == 1 | ||
height (Node 1 [Node 2 []]) == 2 | ||
-} | ||
height :: Tree a -> Integer | ||
height (Node _ []) = 1 | ||
height (Node _ xn) = 1 + maximum (map height xn) |