-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
9 changed files
with
616 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# Ultralytics YOLO 🚀, AGPL-3.0 license | ||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford | ||
# Example usage: yolo train data=VOC.yaml | ||
# parent | ||
# ├── ultralytics | ||
# └── datasets | ||
# └── VOC ← downloads here (2.8 GB) | ||
|
||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../datasets/VOC | ||
train: # train images (relative to 'path') 16551 images | ||
- images/train2012 | ||
- images/train2007 | ||
- images/val2012 | ||
- images/val2007 | ||
val: # val images (relative to 'path') 4952 images | ||
- images/test2007 | ||
test: # test images (optional) | ||
- images/test2007 | ||
|
||
# Classes | ||
names: | ||
0: aeroplane | ||
1: bicycle | ||
2: bird | ||
3: boat | ||
4: bottle | ||
5: bus | ||
6: car | ||
7: cat | ||
8: chair | ||
9: cow | ||
10: diningtable | ||
11: dog | ||
12: horse | ||
13: motorbike | ||
14: person | ||
15: pottedplant | ||
16: sheep | ||
17: sofa | ||
18: train | ||
19: tvmonitor | ||
|
||
|
||
# Download script/URL (optional) --------------------------------------------------------------------------------------- | ||
download: | | ||
import xml.etree.ElementTree as ET | ||
from tqdm import tqdm | ||
from ultralytics.utils.downloads import download | ||
from pathlib import Path | ||
def convert_label(path, lb_path, year, image_id): | ||
def convert_box(size, box): | ||
dw, dh = 1. / size[0], 1. / size[1] | ||
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2] | ||
return x * dw, y * dh, w * dw, h * dh | ||
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml') | ||
out_file = open(lb_path, 'w') | ||
tree = ET.parse(in_file) | ||
root = tree.getroot() | ||
size = root.find('size') | ||
w = int(size.find('width').text) | ||
h = int(size.find('height').text) | ||
names = list(yaml['names'].values()) # names list | ||
for obj in root.iter('object'): | ||
cls = obj.find('name').text | ||
if cls in names and int(obj.find('difficult').text) != 1: | ||
xmlbox = obj.find('bndbox') | ||
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')]) | ||
cls_id = names.index(cls) # class id | ||
out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + '\n') | ||
# Download | ||
dir = Path(yaml['path']) # dataset root dir | ||
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' | ||
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images | ||
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images | ||
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images | ||
download(urls, dir=dir / 'images', curl=True, threads=3) | ||
# Convert | ||
path = dir / 'images/VOCdevkit' | ||
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'): | ||
imgs_path = dir / 'images' / f'{image_set}{year}' | ||
lbs_path = dir / 'labels' / f'{image_set}{year}' | ||
imgs_path.mkdir(exist_ok=True, parents=True) | ||
lbs_path.mkdir(exist_ok=True, parents=True) | ||
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f: | ||
image_ids = f.read().strip().split() | ||
for id in tqdm(image_ids, desc=f'{image_set}{year}'): | ||
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path | ||
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path | ||
f.rename(imgs_path / f.name) # move image | ||
convert_label(path, lb_path, year, id) # convert labels to YOLO format |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# Ultralytics YOLO 🚀, AGPL-3.0 license | ||
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University | ||
# Example usage: yolo train data=VisDrone.yaml | ||
# parent | ||
# ├── ultralytics | ||
# └── datasets | ||
# └── VisDrone ← downloads here (2.3 GB) | ||
|
||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../datasets/VisDrone # dataset root dir | ||
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images | ||
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images | ||
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images | ||
|
||
# Classes | ||
names: | ||
0: pedestrian | ||
1: people | ||
2: bicycle | ||
3: car | ||
4: van | ||
5: truck | ||
6: tricycle | ||
7: awning-tricycle | ||
8: bus | ||
9: motor | ||
|
||
|
||
# Download script/URL (optional) --------------------------------------------------------------------------------------- | ||
download: | | ||
import os | ||
from pathlib import Path | ||
from ultralytics.utils.downloads import download | ||
def visdrone2yolo(dir): | ||
from PIL import Image | ||
from tqdm import tqdm | ||
def convert_box(size, box): | ||
# Convert VisDrone box to YOLO xywh box | ||
dw = 1. / size[0] | ||
dh = 1. / size[1] | ||
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh | ||
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory | ||
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') | ||
for f in pbar: | ||
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size | ||
lines = [] | ||
with open(f, 'r') as file: # read annotation.txt | ||
for row in [x.split(',') for x in file.read().strip().splitlines()]: | ||
if row[4] == '0': # VisDrone 'ignored regions' class 0 | ||
continue | ||
cls = int(row[5]) - 1 | ||
box = convert_box(img_size, tuple(map(int, row[:4]))) | ||
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") | ||
with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl: | ||
fl.writelines(lines) # write label.txt | ||
# Download | ||
dir = Path(yaml['path']) # dataset root dir | ||
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', | ||
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', | ||
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', | ||
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] | ||
download(urls, dir=dir, curl=True, threads=4) | ||
# Convert | ||
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': | ||
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# Ultralytics YOLO 🚀, AGPL-3.0 license | ||
# COCO 2017 dataset http://cocodataset.org by Microsoft | ||
# Example usage: yolo train data=coco.yaml | ||
# parent | ||
# ├── ultralytics | ||
# └── datasets | ||
# └── coco ← downloads here (20.1 GB) | ||
|
||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../../datasets/animal # dataset root dir | ||
train: images/train # train images (relative to 'path') 118287 images | ||
val: images/val # val images (relative to 'path') 5000 images | ||
|
||
# Classes | ||
names: | ||
0: dog | ||
1: chicken | ||
2: horse | ||
3: cat | ||
4: cow | ||
5: sheep | ||
6: pig | ||
7: elephant | ||
8: fox | ||
9: wolf | ||
10: tiger | ||
11: antelope | ||
12: deer | ||
13: squirrel | ||
14: rabbit | ||
15: panda | ||
16: black bear | ||
17: brown bear | ||
18: groundhog | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# Ultralytics YOLO 🚀, AGPL-3.0 license | ||
# COCO 2017 dataset http://cocodataset.org by Microsoft | ||
# Example usage: yolo train data=coco-pose.yaml | ||
# parent | ||
# ├── ultralytics | ||
# └── datasets | ||
# └── coco-pose ← downloads here (20.1 GB) | ||
|
||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../datasets/coco-pose # dataset root dir | ||
train: train2017.txt # train images (relative to 'path') 118287 images | ||
val: val2017.txt # val images (relative to 'path') 5000 images | ||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 | ||
|
||
# Keypoints | ||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) | ||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] | ||
|
||
# Classes | ||
names: | ||
0: person | ||
|
||
# Download script/URL (optional) | ||
download: | | ||
from ultralytics.utils.downloads import download | ||
from pathlib import Path | ||
# Download labels | ||
dir = Path(yaml['path']) # dataset root dir | ||
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' | ||
urls = [url + 'coco2017labels-pose.zip'] # labels | ||
download(urls, dir=dir.parent) | ||
# Download data | ||
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images | ||
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images | ||
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional) | ||
download(urls, dir=dir / 'images', threads=3) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# Ultralytics YOLO 🚀, AGPL-3.0 license | ||
# COCO 2017 dataset http://cocodataset.org by Microsoft | ||
# Example usage: yolo train data=coco.yaml | ||
# parent | ||
# ├── ultralytics | ||
# └── datasets | ||
# └── coco ← downloads here (20.1 GB) | ||
|
||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../../datasets/coco # dataset root dir | ||
#path: /root/autodl-tmp/datasets/coco # dataset root dir | ||
train: images/train2017 # train images (relative to 'path') 118287 images | ||
val: images/val2017 # val images (relative to 'path') 5000 images | ||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 | ||
|
||
# Classes | ||
names: | ||
0: person | ||
1: bicycle | ||
2: car | ||
3: motorcycle | ||
4: airplane | ||
5: bus | ||
6: trainaq | ||
7: truck | ||
8: boat | ||
9: traffic light | ||
10: fire hydrant | ||
11: stop sign | ||
12: parking meter | ||
13: bench | ||
14: bird | ||
15: cat | ||
16: dog | ||
17: horse | ||
18: sheep | ||
19: cow | ||
20: elephant | ||
21: bear | ||
22: zebra | ||
23: giraffe | ||
24: backpack | ||
25: umbrella | ||
26: handbag | ||
27: tie | ||
28: suitcase | ||
29: frisbee | ||
30: skis | ||
31: snowboard | ||
32: sports ball | ||
33: kite | ||
34: baseball bat | ||
35: baseball glove | ||
36: skateboard | ||
37: surfboard | ||
38: tennis racket | ||
39: bottle | ||
40: wine glass | ||
41: cup | ||
42: fork | ||
43: knife | ||
44: spoon | ||
45: bowl | ||
46: banana | ||
47: apple | ||
48: sandwich | ||
49: orange | ||
50: broccoli | ||
51: carrot | ||
52: hot dog | ||
53: pizza | ||
54: donut | ||
55: cake | ||
56: chair | ||
57: couch | ||
58: potted plant | ||
59: bed | ||
60: dining table | ||
61: toilet | ||
62: tv | ||
63: laptop | ||
64: mouse | ||
65: remote | ||
66: keyboard | ||
67: cell phone | ||
68: microwave | ||
69: oven | ||
70: toaster | ||
71: sink | ||
72: refrigerator | ||
73: book | ||
74: clock | ||
75: vase | ||
76: scissors | ||
77: teddy bear | ||
78: hair drier | ||
79: toothbrush | ||
|
||
|
||
# Download script/URL (optional) | ||
download: | | ||
from ultralytics.utils.downloads import download | ||
from pathlib import Path | ||
# Download labels | ||
segments = True # segment or box labels | ||
dir = Path(yaml['path']) # dataset root dir | ||
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' | ||
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels | ||
download(urls, dir=dir.parent) | ||
# Download data | ||
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images | ||
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images | ||
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional) | ||
download(urls, dir=dir / 'images', threads=3) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# Ultralytics YOLO 🚀, AGPL-3.0 license | ||
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics | ||
# Example usage: yolo train data=coco8-pose.yaml | ||
# parent | ||
# ├── ultralytics | ||
# └── datasets | ||
# └── coco8-pose ← downloads here (1 MB) | ||
|
||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../datasets/coco8-pose # dataset root dir | ||
train: images/train # train images (relative to 'path') 4 images | ||
val: images/val # val images (relative to 'path') 4 images | ||
test: # test images (optional) | ||
|
||
# Keypoints | ||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) | ||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] | ||
|
||
# Classes | ||
names: | ||
0: person | ||
|
||
# Download script/URL (optional) | ||
download: https://ultralytics.com/assets/coco8-pose.zip |
Oops, something went wrong.