Awesome for Paper Reading
A curated list of awesome Paper resources in Deep learning and computer vision.
To complement or correct it, please send a pull request.
Review
Segmentation
Detection
Reconstruction
Classification
Registration
Others
1. NMS:Non-Maximum Suppression.
Paper: http://arxiv.org/abs/1411.5309
Reference: https://www.coursera.org/lecture/convolutional-neural-networks/non-max-suppression-dvrjH
2. Soft-NMS:Improving Object Detection With One Line of Code.
Paper: https://arxiv.org/abs/1704.04503
Code: https://github.com/bharatsingh430/soft-nms
3. Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection.
Paper: https://arxiv.org/abs/1809.08545v1
Code: https://github.com/yihui-he/softer-NMS
4. IoU guided NMS:Acquisition of Localization Confidence for Accurate Object Detection.
Reference: https://blog.csdn.net/qq_41648043/article/details/82716133
Code: https://github.com/vacancy/PreciseRoIPooling
5. ConvNMS:A Convnet for Non-maximum Suppression.
Paper: https://arxiv.org/abs/1511.06437
6. Pure NMS Network:Learning non-maximum suppression.
Paper: https://arxiv.org/abs/1705.02950
Code: https://github.com/hosang/gossipnet
7. Yes-Net: An effective Detector Based on Global Information.
Paper: https://arxiv.org/abs/1706.09180
8. Pairwise-NMS: Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes
Paper: https://arxiv.org/abs/1901.03796
9. Relation Module: Relation Networks for Object Detection.
Paper: https://arxiv.org/abs/1711.11575
Reference: https://www.zhihu.com/question/263428989
Code: https://github.com/msracver/Relation-Networks-for-Object-Detection
1. SNIP:An Analysis of Scale Invariance in Object Detection.
Paper: https://arxiv.org/abs/1711.08189
Code: https://github.com/bharatsingh430/snip
2. SNIPER: Efficient Multi-Scale Training.
Paper: https://arxiv.org/abs/1805.09300
Code: https://github.com/mahyarnajibi/SNIPER
3. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection.
Paper: https://arxiv.org/abs/1604.00600
4. PAnet:Path Aggregation Network for Instance Segmentation.
Paper: https://arxiv.org/abs/1803.01534
Code: https://github.com/ShuLiu1993/PANet
5. Scale-Aware Face Detection.
Paper: https://arxiv.org/abs/1706.09876
6. Dynamic Zoom-in Network for Fast Object Detection in Large Images.
Paper: https://arxiv.org/abs/1711.05187
7. Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection.
Paper: https://arxiv.org/abs/1709.04347
9. Scale-Aware Trident Networks for Object Detection.
Paper: https://arxiv.org/abs/1901.01892
Code: https://github.com/TuSimple/simpledet/tree/master/models/tridentnet
1. Attention is all you need.
Paper: https://arxiv.org/abs/1706.03762
Reference: https://zhuanlan.zhihu.com/p/48508221
2. Non-local Neural Networks.
Paper: https://arxiv.org/abs/1711.07971
Reference: https://hellozhaozheng.github.io/z_post/计算机视觉-NonLocal-CVPR2018/
Code: https://github.com/facebookresearch/video-nonlocal-net
3. Relation networks for object detection.
Paper: https://arxiv.org/abs/1711.11575
Code: https://github.com/msracver/Relation-Networks-for-Object-Detection
4. Residual attention network for image classification.
Paper: https://arxiv.org/abs/1704.06904
Reference: https://www.youtube.com/watch?v=Deq1BGTHIPA
Code: https://github.com/fwang91/residual-attention-network
5. OCNet: Object Context Network for Scene Parsing.
Paper: https://arxiv.org/abs/1809.00916
Code: https://github.com/PkuRainBow/OCNet.pytorch
6. Dual Attention Network for Scene Segmentation.
Paper: https://arxiv.org/abs/1809.02983
Code: https://github.com/junfu1115/DANet
7. Self-Attention Generative Adversarial Networks.
Paper: https://arxiv.org/abs/1805.08318
Code: https://github.com/heykeetae/Self-Attention-GAN
8. Context Encoding for Semantic Segmentation
Paper: https://arxiv.org/abs/1803.08904
Reference: https://hangzhang.org/PyTorch-Encoding/experiments/segmentation.html
Code: https://github.com/zhanghang1989/PyTorch-Encoding
9. Squeeze-and-Excitation Networks.
Paper: https://arxiv.org/abs/1711.11575
Reference: https://zhuanlan.zhihu.com/p/32702350
Code: https://github.com/hujie-frank/SENet
1. DenseBox:Unifying Landmark Localization with End to End Object Detection.
Paper: https://arxiv.org/pdf/1509.04874.pdf
Reference: https://blog.csdn.net/App_12062011/article/details/77941343
2. CornerNet: Keypoint Triplets for Object Detection.
Paper: https://arxiv.org/pdf/1808.01244.pdf
Reference: https://zhuanlan.zhihu.com/p/41825737
Code:https://github.com/princeton-vl/CornerNet
3. ExtremeNet: Bottom-up Object Detection by Grouping Extreme and Center Points.
Paper: https://arxiv.org/pdf/1901.08043.pdf
Code:https://github.com/xingyizhou/ExtremeNet
4. CenterNet:Objects as Points.
Paper: https://arxiv.org/pdf/1904.07850.pdf
Reference: https://www.infoq.cn/article/XUDiNPviWhHhvr6x_oMv
Code:https://github.com/xingyizhou/CenterNet
5. CenterNet: Keypoint Triplets for Object Detection.
Paper: https://arxiv.org/pdf/1904.08189.pdf
Reference: https://zhuanlan.zhihu.com/p/66326413
Code:https://github.com/Duankaiwen/CenterNet
6. FCOS: Fully Convolutional One-Stage Object Detection.
Paper: https://arxiv.org/abs/1904.01355.pdf
Code:https://github.com/tianzhi0549/FCOS
1. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.
Paper: https://arxiv.org/abs/1602.07360
Code: https://github.com/forresti/SqueezeNet
2. Densely Connected Convolutional Networks.
Paper: https://arxiv.org/pdf/1608.06993.pdf
Reference: https://blog.csdn.net/u014380165/article/details/75142664
Code: https://github.com/liuzhuang13/DenseNet
3. Xception: Deep Learning with Depthwise Separable Convolutions.
Paper: https://arxiv.org/abs/1610.02357
Reference: https://blog.csdn.net/u014380165/article/details/75142710
Code: https://github.com/yihui-he/Xception-caffe
4. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
Paper: https://arxiv.org/abs/1704.04861
Reference: https://blog.csdn.net/qq_31914683/article/details/79330343
Code: https://github.com/Zehaos/MobileNet https://github.com/shicai/MobileNet-Caffe
5. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.
Paper: https://arxiv.org/abs/1707.01083
Reference: https://blog.csdn.net/u014380165/article/details/75137111
Code: https://github.com/farmingyard/ShuffleNet
6. NASNet:Learning Transferable Architectures for Scalable Image Recognition.
Paper: https://arxiv.org/abs/1707.07012
Reference: https://blog.csdn.net/xjz18298268521/article/details/79079008 https://zhuanlan.zhihu.com/p/52616166
Code: https://github.com/yeephycho/nasnet-tensorflow
7. CondenseNet: An Efficient DenseNet using Learned Group Convolutions.
Paper: https://arxiv.org/abs/1711.09224
Reference: https://blog.csdn.net/u014380165/article/details/78747711
Code: https://github.com/ShichenLiu/CondenseNet
8. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
Paper: https://arxiv.org/abs/1801.04381
Reference: https://www.cnblogs.com/hejunlin1992/p/9395345.html
Code: https://github.com/xiaochus/MobileNetV2
9. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design.
Paper: https://arxiv.org/abs/1807.11164
Reference: https://zhuanlan.zhihu.com/p/48261931
Code: https://github.com/farmingyard/ShuffleNet
10. MnasNet: Platform-Aware Neural Architecture Search for Mobile.
Paper: https://arxiv.org/abs/1807.11626
Reference: https://zhuanlan.zhihu.com/p/42474017
Code: https://github.com/AnjieZheng/MnasNet-PyTorch
11. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware.
Paper: https://arxiv.org/abs/1812.00332
Reference: https://www.cnblogs.com/wangxiaocvpr/p/10559377.html
Code: https://github.com/MIT-HAN-LAB/ProxylessNAS
12. Searching for MobileNetV3.
Paper: https://arxiv.org/abs/1905.02244v2
Reference: https://blog.csdn.net/sinat_37532065/article/details/90813655
Code: https://github.com/xiaolai-sqlai/mobilenetv3
13. MixConv: Mixed Depthwise Convolutional Kernels.
Paper: https://arxiv.org/abs/1907.09595
Reference: https://zhuanlan.zhihu.com/p/75242090
Code: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet
14. MoGA: Searching Beyond MobileNetV3.
Paper: https://arxiv.org/pdf/1908.01314.pdf
Reference: https://zhuanlan.zhihu.com/p/76909380
Code: https://github.com/xiaomi-automl/MoGA
1. Learning both Weights and Connections for Efficient Neural Network.
Paper: https://arxiv.org/abs/1506.02626
Reference: https://xmfbit.github.io/2018/03/14/paper-network-prune-hansong/
2. Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures.
Paper: https://arxiv.org/pdf/1607.03250.pdf
Reference: https://blog.csdn.net/hsqyc/article/details/83651795
3. Learning Structured Sparsity in Deep Neural Networks.
Paper: https://arxiv.org/abs/1608.03665
Reference: https://xmfbit.github.io/2018/02/24/paper-ssl-dnn/
4. L1-norm based channel pruning(Pruning Filters for Efficient ConvNets).
Paper: https://arxiv.org/abs/1608.08710
Reference: https://blog.csdn.net/u013082989/article/details/77943240
5. Channel Pruning for Accelerating Very Deep Neural Networks.
Paper: https://arxiv.org/abs/1707.06168
Reference: https://www.jianshu.com/p/e4aeba86e14c
Code: https://github.com/yihui-he/channel-pruning
6. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression.
Paper: https://arxiv.org/pdf/1707.06342.pdf
Reference: https://blog.csdn.net/u014380165/article/details/77763037
7. Learning Efficient Convolutional Networks through Network Slimming.
Paper: https://arxiv.org/pdf/1708.06519.pdf
Reference: https://blog.csdn.net/u011995719/article/details/78788336
8. AutoPruner: An End-to-End Trainable Filter Pruning Method for Efficient Deep Model Inference.
Paper: https://arxiv.org/abs/1805.08941
Reference: https://blog.csdn.net/linlb15/article/details/102711929
9. RETHINKING THE VALUE OF NETWORK PRUNING.
Paper: https://arxiv.org/abs/1810.05270
Reference: https://blog.csdn.net/zhangjunhit/article/details/83506306
Code: https://github.com/Eric-mingjie/rethinking-network-pruning
10. SLIMMABLE NEURAL NETWORKS.
Paper: https://openreview.net/pdf?id=H1gMCsAqY7 v1
Reference: https://blog.csdn.net/qq_14845119/article/details/89453059
Code: https://github.com/JiahuiYu/slimmable_networks
8. Universally Slimmable Networks and Improved Training Techniques.
Paper: https://arxiv.org/abs/1903.05134 v2
Reference: https://www.zhihu.com/question/306865592
Code: https://github.com/JiahuiYu/slimmable_networks
9. AutoSlim: Towards One-Shot Architecture Search for Channel Numbers.
Paper: https://arxiv.org/abs/1903.11728v3
Reference: https://zhuanlan.zhihu.com/p/75518741
Code: https://github.com/JiahuiYu/slimmable_networks
1. GAN: Generative Adversarial Nets
Paper: https://arxiv.org/abs/1406.2661
Reference: https://blog.csdn.net/wspba/article/details/54577236
2. CGAN: Conditional Generative Adversarial Nets
Paper: https://arxiv.org/abs/1411.1784
Reference: https://blog.csdn.net/taoyafan/article/details/81229466
Code: https://github.com/eriklindernoren/Keras-GAN/tree/master/cgan
3. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
Paper: https://arxiv.org/abs/1506.05751
Reference: https://www.cnblogs.com/wangxiaocvpr/p/5966776.html
Code: http://soumith.ch/eyescream/
4. DCGAN: unsupervised representation learning with deep convolutional generative adversarial
Paper: https://arxiv.org/abs/1511.06434
Reference: https://blog.csdn.net/liuxiao214/article/details/73500737
code: https://github.com/carpedm20/DCGAN-tensorflow
5. Improved Techniques for Training GANs
Paper: https://arxiv.org/abs/1606.03498
Reference: https://blog.csdn.net/u013972559/article/details/85545339
6. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Paper: https://arxiv.org/abs/1606.03657
Code: https://github.com/openai/InfoGAN
7. Pixel-Level Domain Transfer
Paper: https://arxiv.org/abs/1603.07442
8. ACGAN: Conditional Image Synthesis with Auxiliary Classifier GAN
Paper: https://arxiv.org/abs/1610.09585
Code:https://github.com/buriburisuri/ac-gan
9. CycleGAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Paper: https://arxiv.org/abs/1703.10593
Reference: https://blog.csdn.net/cassiepython/article/details/80942899
Code:https://github.com/junyanz/CycleGAN
Code:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
10. FID: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
Paper: https://arxiv.org/abs/1706.08500
Reference: https://baijiahao.baidu.com/s?id=1647349368499780367&wfr=spider&for=pc
11. LSGAN: Least Squares Generative Adversarial Networks
Paper: https://arxiv.org/abs/1611.04076v2
Reference: https://blog.csdn.net/cuihuijun1hao/article/details/83114145
Code:https://github.com/eriklindernoren/Keras-GAN/tree/master/lsgan
12. Pix2pix: Image-to-Image Translation with Conditional Adversarial Networks
Paper: https://arxiv.org/pdf/1611.07004v3.pdf
Code:https://phillipi.github.io/pix2pix/
13. TripleGAN: Triple Generative Adversarial Net
Paper: https://arxiv.org/abs/1703.02291v2
Reference: https://blog.csdn.net/Forlogen/article/details/89415400
Code: https://github.com/zhenxuan00/triple-gan
14. WGAN: Wasserstein Generative Adversarial Networks
Paper: https://arxiv.org/abs/1701.07875
Reference: https://zhuanlan.zhihu.com/p/25071913
Code: https://github.com/eriklindernoren/Keras-GAN/tree/master/wgan
15. WGAN-GP: Improved Training of Wasserstein GANs
Paper:http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
Code: https://github.com/eriklindernoren/Keras-GAN/tree/master/wgan_gp
16. BSGAN: Boundary-Seeking Generative Adversarial Networks
Paper: https://arxiv.org/abs/1702.08431v2
Code: https://github.com/eriklindernoren/Keras-GAN
17. How good is my GAN?
Paper: https://arxiv.org/abs/1807.09499
Reference: https://zhuanlan.zhihu.com/p/43617017
18. MUNIT: Multimodal Unsupervised Image-to-Image Translation
Paper: https://arxiv.org/abs/1804.04732
Reference: https://blog.csdn.net/MajorDong100/article/details/84335653
Code: https://github.com/nvlabs/MUNIT
19. PacGAN: The power of two samples in generative adversarial networks
Code: https://github.com/fjxmlzn/PacGAN
20. PGAN: Progressive Growing of GANs for Improved Quality, Stability, and Variation
Reference: https://blog.csdn.net/weixin_42360095/article/details/89521849
Code: https://github.com/tkarras/progressive_growing_of_gans
21. Pix2pixHD: High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Reference: https://research.nvidia.com/publication/2017-12_High-Resolution-Image-Synthesis
Code: https://github.com/NVIDIA/pix2pixHD
**22. cGANs with Projection Discriminator **
Reference: https://zhuanlan.zhihu.com/p/63353147
Code: https://github.com/pfnet-research/sngan_projection
23. SNGAN: Spectral Normalization for Generative Adversarial Networks
Paper: https://arxiv.org/abs/1802.05957
Code: https://github.com/pfnet-research/sngan_projection
24. StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks
Paper: https://arxiv.org/abs/1812.04948
Reference: http://www.sohu.com/a/282014920_129720
25. StyleGANv2: Analyzing and Improving the Image Quality of StyleGAN
Paper: http://arxiv.org/abs/1912.04958
Reference: https://blog.csdn.net/WinerChopin/article/details/103538073
Code: https://github.com/NVlabs/stylegan2
26. bigGAN: Large scale GANtraining for high fidelity natural image synthesis