Skip to content

hyeon95y/FinanceDataReader

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FinanceDataReader

FinanceData.KR Open Source Financial data reader

Overview

The FinanceDataReader is intended to complement rather than replacement pandas-datareader. The main functions are as follows.

  • Symbol listings: KRX (KOSPI, KODAQ, KONEX), NASDAQ, NYSE, AMEX and S&P 500
  • Stock price(Word wide): AAPL, AMZN, GOOG ...
  • Stock price(KRX): 005930(Samsung), 091990(Celltrion Healthcare) ...
  • Indexes: KOSPI, KOSDAQ, DJI, IXIC, US500(S&P 500) ...
  • Exchanges: USD/KRX, USD/EUR, CNY/KRW ...
  • Cryptocurrency: BTC/USD (Bitfinex), BTC/KRW (Bithumb)

Install

pip install finance_datareader

Quick Start

import FinanceDataReader as fdr

# Apple(AAPL), 2017-01-01 ~ Now
df = fdr.DataReader('AAPL', '2017')

# AMAZON(AMZN), 2017
df = fdr.DataReader('AMZN', '2017-01-01', '2017-12-31')

# Samsung(005930), 1992-01-01 ~ 2018-10-31
df = fdr.DataReader('068270', '1992-01-01', '2018-10-31')

# country code: ex) 000150: Doosan(KR), Yihua Healthcare(CN)
df = fdr.DataReader('000150', '2018-01-01', '2018-10-30') # default: 'KR' 
df = fdr.DataReader('000150', '2018-01-01', '2018-10-30', country='KR')
df = fdr.DataReader('000150', '2018-01-01', '2018-10-30', country='CN')

# KOSPI index, 2015~Now
df = fdr.DataReader('KS11', '2015-01-01')

# Dow Jones Industrial(DJI), 2015년~Now
df = fdr.DataReader('DJI', '2015-01-01')

# USD/KRW, 1995~Now
df = fdr.DataReader('USD/KRW', '1995-01-01')

# Bitcoin KRW price (Bithumbs), 2016 ~ Now
df = fdr.DataReader('BTC/KRW', '2016-01-01')

# KRX stock symbol list and names
df_krx = fdr.StockListing('KRX')

# S&P 500 symbol list
df_spx = fdr.StockListing('S&P500')

Using FinanceDataReader

FinanceDataReader Notebooks

Notes

  • All stock price of KRX is adjust price and date from year 1992
    가격 데이터는 모두 수정가격(djust price)이며, 1992년 부터 현재까지 가격 데이터를 제공합니다
    (한번에 5000개의 데이터를 가져옵니다. 10년 이상 데이터를 가져오려면 두번에 나누어 가져오십시오)

About

Financial data reader

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%