Skip to content

Commit

Permalink
Prepare optimizer only when args.do_train is True
Browse files Browse the repository at this point in the history
  • Loading branch information
MottoX committed May 2, 2019
1 parent 3ae8c8b commit 74dbba6
Show file tree
Hide file tree
Showing 5 changed files with 138 additions and 133 deletions.
57 changes: 29 additions & 28 deletions examples/lm_finetuning/simple_lm_finetuning.py
Original file line number Diff line number Diff line change
Expand Up @@ -534,36 +534,37 @@ def main():
model = torch.nn.DataParallel(model)

# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]

if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]

if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

global_step = 0
if args.do_train:
Expand Down
55 changes: 28 additions & 27 deletions examples/run_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -763,35 +763,36 @@ def main():
model = torch.nn.DataParallel(model)

# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

global_step = 0
nb_tr_steps = 0
Expand Down
27 changes: 14 additions & 13 deletions examples/run_openai_gpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,19 +183,20 @@ def tokenize_and_encode(obj):
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)

if args.do_train:
nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
Expand Down
67 changes: 34 additions & 33 deletions examples/run_squad.py
Original file line number Diff line number Diff line change
Expand Up @@ -922,40 +922,41 @@ def main():
model = torch.nn.DataParallel(model)

# Prepare optimizer
param_optimizer = list(model.named_parameters())

# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]

if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
if args.do_train:
param_optimizer = list(model.named_parameters())

# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]

if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

global_step = 0
if args.do_train:
Expand Down
65 changes: 33 additions & 32 deletions examples/run_swag.py
Original file line number Diff line number Diff line change
Expand Up @@ -385,39 +385,40 @@ def main():
model = torch.nn.DataParallel(model)

# Prepare optimizer
param_optimizer = list(model.named_parameters())

# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
if args.do_train:
param_optimizer = list(model.named_parameters())

# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)

global_step = 0
if args.do_train:
Expand Down

0 comments on commit 74dbba6

Please sign in to comment.