Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix fx tests with inputs_embeds #31862

Merged
merged 3 commits into from
Jul 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 16 additions & 4 deletions src/transformers/utils/fx.py
Original file line number Diff line number Diff line change
Expand Up @@ -997,11 +997,23 @@ def _generate_dummy_input(
)
elif "inputs_embeds" in input_name:
batch_size = shape[0]
sequence_length = shape[-1]

inputs_dict[input_name] = torch.zeros(
batch_size, sequence_length, model.config.hidden_size, dtype=torch.float, device=device
)
if (
getattr(model.config, "embedding_size", None) is not None
and model.config.model_type != "megatron-bert"
):
embedding_size = model.config.embedding_size
else:
embedding_size = model.config.hidden_size

if len(shape) == 3:
# (batch_size, num_choices, sequence_length, embedding_size)
embedding_shape = (batch_size, shape[1], shape[2], embedding_size)
else:
# (batch_size, sequence_length, embedding_size)
embedding_shape = (batch_size, shape[1], embedding_size)

inputs_dict[input_name] = torch.zeros(embedding_shape, dtype=torch.float, device=device)
elif "visual_feats" in input_name:
inputs_dict[input_name] = torch.zeros(
shape
Expand Down
35 changes: 27 additions & 8 deletions tests/test_modeling_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1215,14 +1215,33 @@ def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=Fa
(past_mask, inputs_to_test[1]["attention_mask"]), dim=1
)

if "inputs_embeds" in inspect.signature(model.forward).parameters and not model.config.is_encoder_decoder:
inputs_to_test.append(
{
"inputs_embeds": torch.rand(
2, 2, model.config.hidden_size, dtype=torch.float, device=torch_device
)
}
)
forward_parameters = inspect.signature(model.forward).parameters
if "input_ids" in forward_parameters and "inputs_embeds" in forward_parameters:
inps = copy.deepcopy(inputs_to_test[0])

embedding_size = (
model.config.embedding_size
if getattr(model.config, "embedding_size", None) is not None
and model.config.model_type != "megatron-bert"
else model.config.hidden_size
)

if (
model.config.model_type in MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
and model.__class__.__name__
== MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES[model.config.model_type]
):
batch_size, num_choices, sequence_length = inputs["input_ids"].shape
shape = (batch_size, num_choices, sequence_length, embedding_size)
elif inps["input_ids"].ndim == 2:
batch_size, sequence_length = inputs["input_ids"].shape
shape = (batch_size, sequence_length, embedding_size)
else:
self.skipTest("Unknown case")

del inps["input_ids"]
inps["inputs_embeds"] = torch.rand(shape, dtype=torch.float, device=torch_device)
inputs_to_test.append(inps)

for inps in inputs_to_test:
filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
Expand Down
Loading