|
| 1 | +# MIT License |
| 2 | + |
| 3 | +# Copyright (c) 2024 The HuggingFace Team |
| 4 | + |
| 5 | +# Permission is hereby granted, free of charge, to any person obtaining a copy |
| 6 | +# of this software and associated documentation files (the "Software"), to deal |
| 7 | +# in the Software without restriction, including without limitation the rights |
| 8 | +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 9 | +# copies of the Software, and to permit persons to whom the Software is |
| 10 | +# furnished to do so, subject to the following conditions: |
| 11 | + |
| 12 | +# The above copyright notice and this permission notice shall be included in all |
| 13 | +# copies or substantial portions of the Software. |
| 14 | + |
| 15 | +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 18 | +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 20 | +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 21 | +# SOFTWARE. |
| 22 | + |
| 23 | +from langcodes import Language as LangCodeLanguage |
| 24 | +from langcodes import standardize_tag |
| 25 | + |
| 26 | +from lighteval.metrics.dynamic_metrics import loglikelihood_acc_metric |
| 27 | +from lighteval.metrics.normalizations import LogProbTokenNorm |
| 28 | +from lighteval.tasks.lighteval_task import LightevalTaskConfig |
| 29 | +from lighteval.tasks.templates.nli import get_nli_prompt_function |
| 30 | +from lighteval.tasks.templates.utils.formulation import ( |
| 31 | + CFFormulation, |
| 32 | + HybridFormulation, |
| 33 | + MCFFormulation, |
| 34 | +) |
| 35 | +from lighteval.utils.language import Language |
| 36 | + |
| 37 | + |
| 38 | +# ------------------------------- NLI Tasks ------------------------------- # |
| 39 | +# NLI (Natural Language Inference) tasks involve determining the logical relationship |
| 40 | +# between two given sentences: a premise and a hypothesis. The goal is to classify |
| 41 | +# whether the hypothesis is entailed by, contradicts, or is neutral with respect to |
| 42 | +# the premise. After our inspection we found the neutral label to be quite ambiguous |
| 43 | +# and decided to exclude it. But you can easily add it by modifying the adapters |
| 44 | + |
| 45 | + |
| 46 | +# The XNLI dataset is a multilingual variant of MultiNLI |
| 47 | +# https://aclanthology.org/D18-1269/ |
| 48 | +xnli_tasks = [ |
| 49 | + LightevalTaskConfig( |
| 50 | + name=f"xnli_{language.value}_{formulation.name.lower()}", |
| 51 | + suite=["lighteval"], |
| 52 | + metric=[loglikelihood_acc_metric(normalization=LogProbTokenNorm())], |
| 53 | + prompt_function=get_nli_prompt_function( |
| 54 | + language=language, |
| 55 | + adapter=lambda line: { |
| 56 | + "premise": line["premise"], |
| 57 | + "hypothesis": line["hypothesis"], |
| 58 | + # Since we ignore the neutral label |
| 59 | + "gold_idx": {0: 0, 2: 1}[line["label"]], |
| 60 | + }, |
| 61 | + relations=["entailment", "contradiction"], |
| 62 | + formulation=formulation, |
| 63 | + ), |
| 64 | + hf_filter=lambda line: line["label"] in [0, 2], |
| 65 | + hf_repo="facebook/xnli", |
| 66 | + hf_subset=standardize_tag(language.value), |
| 67 | + evaluation_splits=["validation"], |
| 68 | + few_shots_split="train", |
| 69 | + ) |
| 70 | + for language in [ |
| 71 | + Language.ARABIC, |
| 72 | + Language.ENGLISH, |
| 73 | + Language.FRENCH, |
| 74 | + Language.SPANISH, |
| 75 | + Language.BULGARIAN, |
| 76 | + Language.GERMAN, |
| 77 | + Language.GREEK, |
| 78 | + Language.ENGLISH, |
| 79 | + Language.FRENCH, |
| 80 | + Language.HINDI, |
| 81 | + Language.RUSSIAN, |
| 82 | + Language.SWAHILI, |
| 83 | + Language.THAI, |
| 84 | + Language.TURKISH, |
| 85 | + Language.URDU, |
| 86 | + Language.VIETNAMESE, |
| 87 | + Language.CHINESE, |
| 88 | + ] |
| 89 | + for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()] |
| 90 | +] |
| 91 | + |
| 92 | +# Improvement on XNLI with better translation, from our experience models tend to |
| 93 | +# perform better on XNLI2.0 than XNLI |
| 94 | +# https://arxiv.org/abs/2301.06527 |
| 95 | +xnli2_tasks = [ |
| 96 | + LightevalTaskConfig( |
| 97 | + name=f"xnli2.0_{language.value}_{formulation.name.lower()}", |
| 98 | + suite=["lighteval"], |
| 99 | + metric=[loglikelihood_acc_metric(normalization=LogProbTokenNorm())], |
| 100 | + prompt_function=get_nli_prompt_function( |
| 101 | + language=language, |
| 102 | + adapter=lambda line: { |
| 103 | + "premise": line["premise"], |
| 104 | + "hypothesis": line["hypothesis"], |
| 105 | + # Since we ignore the neutral label |
| 106 | + "gold_idx": {0: 0, 2: 1}[line["label"]], |
| 107 | + }, |
| 108 | + relations=["entailment", "contradiction"], |
| 109 | + formulation=formulation, |
| 110 | + ), |
| 111 | + hf_filter=lambda line: line["label"] in [0, 2], |
| 112 | + hf_repo=f"Harsit/xnli2.0_train_{LangCodeLanguage(standardize_tag(language.value)).language_name().lower()}", |
| 113 | + hf_subset="default", |
| 114 | + evaluation_splits=["train"], |
| 115 | + ) |
| 116 | + for language in [ |
| 117 | + Language.ENGLISH, |
| 118 | + Language.FRENCH, |
| 119 | + Language.PUNJABI, |
| 120 | + Language.GUJARATI, |
| 121 | + Language.KANNADA, |
| 122 | + Language.ASSAMESE, |
| 123 | + Language.BENGALI, |
| 124 | + Language.MARATHI, |
| 125 | + Language.SANSKRIT, |
| 126 | + Language.TAMIL, |
| 127 | + Language.GERMAN, |
| 128 | + Language.ENGLISH, |
| 129 | + Language.URDU, |
| 130 | + Language.VIETNAMESE, |
| 131 | + Language.TURKISH, |
| 132 | + Language.THAI, |
| 133 | + Language.SWAHILI, |
| 134 | + Language.SPANISH, |
| 135 | + Language.RUSSIAN, |
| 136 | + Language.HINDI, |
| 137 | + Language.GREEK, |
| 138 | + Language.CHINESE, |
| 139 | + Language.BULGARIAN, |
| 140 | + Language.ARABIC, |
| 141 | + # Theoretically also: Bhojpuri, Gujarati, Odiya |
| 142 | + ] |
| 143 | + for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()] |
| 144 | +] |
| 145 | + |
| 146 | +# Another variant of XNLI, with emphasis on Indic languages |
| 147 | +# https://arxiv.org/abs/2204.08776 |
| 148 | +xnli_indic_tasks = [ |
| 149 | + LightevalTaskConfig( |
| 150 | + name=f"indicnxnli_{language.value}_{formulation.name.lower()}", |
| 151 | + suite=["lighteval"], |
| 152 | + prompt_function=get_nli_prompt_function( |
| 153 | + language=language, |
| 154 | + adapter=lambda line: { |
| 155 | + "premise": line["premise"], |
| 156 | + "hypothesis": line["hypothesis"], |
| 157 | + # Since we ignore the neutral label |
| 158 | + "gold_idx": {0: 0, 2: 1}[line["label"]], |
| 159 | + }, |
| 160 | + relations=["entailment", "contradiction"], |
| 161 | + formulation=formulation, |
| 162 | + ), |
| 163 | + hf_repo="Divyanshu/indicxnli", |
| 164 | + hf_subset=standardize_tag(language.value), |
| 165 | + # Ignore neutral |
| 166 | + hf_filter=lambda x: int(x["label"]) in [0, 2], |
| 167 | + evaluation_splits=["validation"], |
| 168 | + few_shots_split="train", |
| 169 | + few_shots_select=None, |
| 170 | + generation_size=-1, |
| 171 | + metric=[ |
| 172 | + loglikelihood_acc_metric(normalization=LogProbTokenNorm()), |
| 173 | + ], |
| 174 | + ) |
| 175 | + for language in [ |
| 176 | + Language.ASSAMESE, |
| 177 | + Language.BENGALI, |
| 178 | + Language.GUJARATI, |
| 179 | + Language.HINDI, |
| 180 | + Language.KANNADA, |
| 181 | + Language.MALAYALAM, |
| 182 | + Language.MARATHI, |
| 183 | + Language.ORIYA, |
| 184 | + Language.PUNJABI, |
| 185 | + Language.TAMIL, |
| 186 | + Language.TELUGU, |
| 187 | + ] |
| 188 | + for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()] |
| 189 | +] |
| 190 | + |
| 191 | +# PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification |
| 192 | +# This dataset contains paraphrase identification pairs in multiple languages. |
| 193 | +# It's derived from PAWS (Paraphrase Adversaries from Word Scrambling) and |
| 194 | +# We treat paraphrase as entailment and non-paraphrase as contradiction |
| 195 | +# https://arxiv.org/abs/1908.11828 |
| 196 | + |
| 197 | +paws_x_tasks = [ |
| 198 | + LightevalTaskConfig( |
| 199 | + name=f"pawsx_{language.value}_{formulation.name.lower()}", |
| 200 | + suite=("lighteval",), |
| 201 | + prompt_function=get_nli_prompt_function( |
| 202 | + language=language, |
| 203 | + adapter=lambda line: { |
| 204 | + "premise": line["sentence1"], |
| 205 | + "hypothesis": line["sentence2"], |
| 206 | + # Since we ignore the neutral label |
| 207 | + "gold_idx": int(line["label"]), |
| 208 | + }, |
| 209 | + relations=["entailment", "contradiction"], |
| 210 | + formulation=formulation, |
| 211 | + ), |
| 212 | + hf_repo="google-research-datasets/paws-x", |
| 213 | + hf_subset=standardize_tag(language.value), |
| 214 | + evaluation_splits=("test",), |
| 215 | + few_shots_split="train", |
| 216 | + metric=[ |
| 217 | + loglikelihood_acc_metric(normalization=LogProbTokenNorm()), |
| 218 | + ], |
| 219 | + ) |
| 220 | + for language in [ |
| 221 | + Language.GERMAN, |
| 222 | + Language.ENGLISH, |
| 223 | + Language.SPANISH, |
| 224 | + Language.FRENCH, |
| 225 | + Language.JAPANESE, |
| 226 | + Language.KOREAN, |
| 227 | + Language.CHINESE, |
| 228 | + ] |
| 229 | + for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()] |
| 230 | +] |
| 231 | + |
| 232 | +# Russian Commitment Bank (RCB) is a large-scale NLI dataset with Russian sentences, |
| 233 | +# collected from the web and crowdsourcing. |
| 234 | +# https://arxiv.org/abs/2401.04531 |
| 235 | +rcb_tasks = [ |
| 236 | + LightevalTaskConfig( |
| 237 | + name=f"rcb_{Language.RUSSIAN.value}_{formulation.name.lower()}", |
| 238 | + prompt_function=get_nli_prompt_function( |
| 239 | + language=Language.RUSSIAN, |
| 240 | + adapter=lambda line: { |
| 241 | + "premise": line["inputs"]["premise"], |
| 242 | + "hypothesis": line["inputs"]["hypothesis"], |
| 243 | + # Since we ignore the neutral label |
| 244 | + "gold_idx": int(line["outputs"]) - 1, |
| 245 | + }, |
| 246 | + relations=["entailment", "contradiction"], |
| 247 | + formulation=formulation, |
| 248 | + ), |
| 249 | + suite=("lighteval",), |
| 250 | + hf_repo="ai-forever/MERA", |
| 251 | + hf_subset="rcb", |
| 252 | + # Ignore neutral label |
| 253 | + hf_filter=lambda x: int(x["outputs"] or "0") in [1, 2], |
| 254 | + evaluation_splits=("train", "validation"), |
| 255 | + metric=[ |
| 256 | + loglikelihood_acc_metric(normalization=LogProbTokenNorm()), |
| 257 | + ], |
| 258 | + ) |
| 259 | + for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()] |
| 260 | +] |
| 261 | + |
| 262 | +# Native Chinese NLI dataset based. |
| 263 | +# https://arxiv.org/pdf/2010.05444 |
| 264 | +# We find this benchmark to have really good signal compared to other Chinese NLI |
| 265 | +ocnli_tasks = [ |
| 266 | + LightevalTaskConfig( |
| 267 | + name=f"ocnli_{Language.CHINESE.value}_{formulation.name.lower()}", |
| 268 | + prompt_function=get_nli_prompt_function( |
| 269 | + language=Language.CHINESE, |
| 270 | + adapter=lambda line: { |
| 271 | + "premise": line["sentence1"], |
| 272 | + "hypothesis": line["sentence2"], |
| 273 | + # Since we ignore the neutral label |
| 274 | + "gold_idx": {1: 0, 2: 1}[line["label"]], |
| 275 | + }, |
| 276 | + relations=["entailment", "contradiction"], |
| 277 | + formulation=formulation, |
| 278 | + ), |
| 279 | + suite=("lighteval",), |
| 280 | + hf_repo="clue/clue", |
| 281 | + hf_subset="ocnli", |
| 282 | + # Only keep the positive and negative examples |
| 283 | + hf_filter=lambda x: int(x["label"]) in [1, 2], |
| 284 | + evaluation_splits=("validation",), |
| 285 | + few_shots_split="train", |
| 286 | + metric=[ |
| 287 | + loglikelihood_acc_metric(normalization=LogProbTokenNorm()), |
| 288 | + ], |
| 289 | + ) |
| 290 | + for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()] |
| 291 | +] |
| 292 | + |
| 293 | +# https://arxiv.org/abs/2004.05986 |
| 294 | +# Native Chinese NLI dataset based on MNLI approach (Machine Translated) |
| 295 | +cmnli_tasks = [ |
| 296 | + LightevalTaskConfig( |
| 297 | + name=f"cmnli_{Language.CHINESE.value}_{formulation.name.lower()}", |
| 298 | + prompt_function=get_nli_prompt_function( |
| 299 | + language=Language.CHINESE, |
| 300 | + adapter=lambda line: { |
| 301 | + "premise": line["sentence1"], |
| 302 | + "hypothesis": line["sentence2"], |
| 303 | + # Since we ignore the neutral label |
| 304 | + "gold_idx": {"entailment": 0, "contradiction": 1}[line["label"]], |
| 305 | + }, |
| 306 | + relations=["entailment", "contradiction"], |
| 307 | + formulation=formulation, |
| 308 | + ), |
| 309 | + suite=("lighteval",), |
| 310 | + hf_repo="fenffef/cmnli", |
| 311 | + hf_subset="default", |
| 312 | + hf_filter=lambda x: x["label"] in ["entailment", "contradiction"], |
| 313 | + # Only keep the positive and negative examples |
| 314 | + evaluation_splits=("validation",), |
| 315 | + few_shots_split="train", |
| 316 | + metric=[ |
| 317 | + loglikelihood_acc_metric(normalization=LogProbTokenNorm()), |
| 318 | + ], |
| 319 | + ) |
| 320 | + for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()] |
| 321 | +] |
| 322 | + |
| 323 | + |
| 324 | +TASKS_TABLE = [*xnli_tasks, *xnli2_tasks, *xnli_indic_tasks, *paws_x_tasks, *rcb_tasks, *ocnli_tasks, *cmnli_tasks] |
0 commit comments