Skip to content

[SDXL Lora] Fix last ben sdxl lora #4797

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Aug 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 27 additions & 14 deletions src/diffusers/loaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -1084,7 +1084,7 @@ def lora_state_dict(
# Map SDXL blocks correctly.
if unet_config is not None:
# use unet config to remap block numbers
state_dict = cls._map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)

return state_dict, network_alphas
Expand Down Expand Up @@ -1121,24 +1121,41 @@ def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_ext
return weight_name

@classmethod
def _map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
is_all_unet = all(k.startswith("lora_unet") for k in state_dict)
def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
# 1. get all state_dict_keys
all_keys = state_dict.keys()
sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

# 2. check if needs remapping, if not return original dict
is_in_sgm_format = False
for key in all_keys:
if any(p in key for p in sgm_patterns):
is_in_sgm_format = True
break

if not is_in_sgm_format:
return state_dict

# 3. Else remap from SGM patterns
new_state_dict = {}
inner_block_map = ["resnets", "attentions", "upsamplers"]

# Retrieves # of down, mid and up blocks
input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
for layer in state_dict:
if "text" not in layer:

for layer in all_keys:
if "text" in layer:
new_state_dict[layer] = state_dict.pop(layer)
else:
layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
if "input_blocks" in layer:
if sgm_patterns[0] in layer:
input_block_ids.add(layer_id)
elif "middle_block" in layer:
elif sgm_patterns[1] in layer:
middle_block_ids.add(layer_id)
elif "output_blocks" in layer:
elif sgm_patterns[2] in layer:
output_block_ids.add(layer_id)
else:
raise ValueError("Checkpoint not supported")
raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")

input_blocks = {
layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
Expand Down Expand Up @@ -1201,12 +1218,8 @@ def _map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", bl
)
new_state_dict[new_key] = state_dict.pop(key)

if is_all_unet and len(state_dict) > 0:
if len(state_dict) > 0:
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Refactor here a bit by moving "adding text encoder keys" further up to have stronger check/assert here

raise ValueError("At this point all state dict entries have to be converted.")
else:
# Remaining is the text encoder state dict.
for k, v in state_dict.items():
new_state_dict.update({k: v})

return new_state_dict

Expand Down
16 changes: 16 additions & 0 deletions tests/models/test_lora_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -942,3 +942,19 @@ def test_sdxl_1_0_lora(self):
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

self.assertTrue(np.allclose(images, expected, atol=1e-4))

def test_sdxl_1_0_last_ben(self):
generator = torch.Generator().manual_seed(0)

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.enable_model_cpu_offload()
lora_model_id = "TheLastBen/Papercut_SDXL"
lora_filename = "papercut.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images

images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])

self.assertTrue(np.allclose(images, expected, atol=1e-3))