Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow polars as valid output type #6762

Merged
merged 4 commits into from
Aug 16, 2024
Merged

Allow polars as valid output type #6762

merged 4 commits into from
Aug 16, 2024

Conversation

psmyth94
Copy link
Contributor

I was trying out polars as an output for a map function and found that it wasn't a valid return type in validate_function_output. Thought that we should accommodate this by creating and adding it to the allowed_processed_input_types variable.

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cool ! Sorry for the late review. Can you add a test to make sure map() with a polars-output function works ?
You can place the test in test_arrow_dataset.py

@psmyth94
Copy link
Contributor Author

Hello @lhoestq, I added the test and modified update_data to include polars as an updatable type. Although, it seems pretty redundant to do the type checks both before validate_function_output and then immediately afterward within the call stack. Could consider adding allowable_types in validation_function_output.

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cool ! thanks for the additions :)

It looks all good to me as is. Not a big deal to have it at two places, since it's not for the same objective (check whether the type is a data update type, and whether the type is a valid type)

tests/test_arrow_dataset.py Show resolved Hide resolved
@lhoestq lhoestq merged commit 5f42139 into huggingface:main Aug 16, 2024
14 checks passed
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005530 / 0.011353 (-0.005823) 0.004012 / 0.011008 (-0.006996) 0.062474 / 0.038508 (0.023966) 0.031896 / 0.023109 (0.008787) 0.239620 / 0.275898 (-0.036278) 0.264694 / 0.323480 (-0.058785) 0.003199 / 0.007986 (-0.004786) 0.003141 / 0.004328 (-0.001187) 0.048726 / 0.004250 (0.044475) 0.044795 / 0.037052 (0.007743) 0.250661 / 0.258489 (-0.007828) 0.279658 / 0.293841 (-0.014183) 0.029857 / 0.128546 (-0.098689) 0.012293 / 0.075646 (-0.063353) 0.203626 / 0.419271 (-0.215646) 0.036284 / 0.043533 (-0.007249) 0.241678 / 0.255139 (-0.013461) 0.259380 / 0.283200 (-0.023820) 0.020400 / 0.141683 (-0.121283) 1.142334 / 1.452155 (-0.309821) 1.199068 / 1.492716 (-0.293648)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.097348 / 0.018006 (0.079341) 0.303468 / 0.000490 (0.302978) 0.000219 / 0.000200 (0.000019) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018646 / 0.037411 (-0.018766) 0.062374 / 0.014526 (0.047848) 0.074585 / 0.176557 (-0.101972) 0.120380 / 0.737135 (-0.616755) 0.075685 / 0.296338 (-0.220653)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.277488 / 0.215209 (0.062279) 2.741734 / 2.077655 (0.664080) 1.451901 / 1.504120 (-0.052219) 1.341712 / 1.541195 (-0.199482) 1.395209 / 1.468490 (-0.073282) 0.736334 / 4.584777 (-3.848443) 2.358225 / 3.745712 (-1.387487) 2.951838 / 5.269862 (-2.318023) 1.892027 / 4.565676 (-2.673649) 0.077913 / 0.424275 (-0.346362) 0.005188 / 0.007607 (-0.002419) 0.328790 / 0.226044 (0.102745) 3.259387 / 2.268929 (0.990459) 1.826102 / 55.444624 (-53.618522) 1.526635 / 6.876477 (-5.349842) 1.576392 / 2.142072 (-0.565680) 0.786244 / 4.805227 (-4.018983) 0.133909 / 6.500664 (-6.366756) 0.044544 / 0.075469 (-0.030925)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.965314 / 1.841788 (-0.876474) 11.786831 / 8.074308 (3.712523) 9.568519 / 10.191392 (-0.622873) 0.140628 / 0.680424 (-0.539796) 0.014442 / 0.534201 (-0.519759) 0.300876 / 0.579283 (-0.278407) 0.262647 / 0.434364 (-0.171717) 0.339141 / 0.540337 (-0.201196) 0.430254 / 1.386936 (-0.956683)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006020 / 0.011353 (-0.005333) 0.004191 / 0.011008 (-0.006818) 0.050006 / 0.038508 (0.011498) 0.033247 / 0.023109 (0.010138) 0.270677 / 0.275898 (-0.005221) 0.299539 / 0.323480 (-0.023941) 0.004391 / 0.007986 (-0.003595) 0.002825 / 0.004328 (-0.001504) 0.048573 / 0.004250 (0.044322) 0.042461 / 0.037052 (0.005409) 0.283812 / 0.258489 (0.025323) 0.324302 / 0.293841 (0.030461) 0.033264 / 0.128546 (-0.095282) 0.012405 / 0.075646 (-0.063241) 0.060298 / 0.419271 (-0.358973) 0.034833 / 0.043533 (-0.008700) 0.271133 / 0.255139 (0.015994) 0.290712 / 0.283200 (0.007512) 0.019762 / 0.141683 (-0.121920) 1.138644 / 1.452155 (-0.313511) 1.204628 / 1.492716 (-0.288088)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.096171 / 0.018006 (0.078164) 0.308916 / 0.000490 (0.308427) 0.000213 / 0.000200 (0.000013) 0.000046 / 0.000054 (-0.000009)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023077 / 0.037411 (-0.014334) 0.078865 / 0.014526 (0.064339) 0.091031 / 0.176557 (-0.085526) 0.133536 / 0.737135 (-0.603599) 0.093308 / 0.296338 (-0.203030)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.301466 / 0.215209 (0.086257) 2.995190 / 2.077655 (0.917535) 1.616545 / 1.504120 (0.112425) 1.472572 / 1.541195 (-0.068622) 1.477191 / 1.468490 (0.008701) 0.730240 / 4.584777 (-3.854537) 0.966591 / 3.745712 (-2.779121) 2.979970 / 5.269862 (-2.289892) 1.908275 / 4.565676 (-2.657401) 0.081346 / 0.424275 (-0.342929) 0.005150 / 0.007607 (-0.002458) 0.349066 / 0.226044 (0.123022) 3.504363 / 2.268929 (1.235435) 1.973355 / 55.444624 (-53.471270) 1.659337 / 6.876477 (-5.217139) 1.701282 / 2.142072 (-0.440790) 0.813493 / 4.805227 (-3.991735) 0.133537 / 6.500664 (-6.367127) 0.041207 / 0.075469 (-0.034262)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.020368 / 1.841788 (-0.821420) 12.444848 / 8.074308 (4.370540) 10.113832 / 10.191392 (-0.077560) 0.137782 / 0.680424 (-0.542642) 0.015217 / 0.534201 (-0.518984) 0.300419 / 0.579283 (-0.278864) 0.128868 / 0.434364 (-0.305496) 0.342831 / 0.540337 (-0.197506) 0.443036 / 1.386936 (-0.943900)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants