forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add truncated gaussian initializer. (PaddlePaddle#13000)
* Add truncated gaussian initializer. * Fix unitest. * Update API.spec * Fix code style and fix bug. * Fix code style. * Small fix.
- Loading branch information
1 parent
642cf6c
commit cf12823
Showing
6 changed files
with
471 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <limits> | ||
#include <random> | ||
#include "paddle/fluid/framework/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e | ||
template <typename T> | ||
T Erfinv(T x) { | ||
if (x < -1 || x > 1) { | ||
return std::numeric_limits<T>::quiet_NaN(); | ||
} else if (x == 1.0) { | ||
return std::numeric_limits<T>::infinity(); | ||
} else if (x == -1.0) { | ||
return -std::numeric_limits<T>::infinity(); | ||
} | ||
|
||
const T LN2 = 6.931471805599453094172321214581e-1; | ||
|
||
const T A0 = 1.1975323115670912564578e0; | ||
const T A1 = 4.7072688112383978012285e1; | ||
const T A2 = 6.9706266534389598238465e2; | ||
const T A3 = 4.8548868893843886794648e3; | ||
const T A4 = 1.6235862515167575384252e4; | ||
const T A5 = 2.3782041382114385731252e4; | ||
const T A6 = 1.1819493347062294404278e4; | ||
const T A7 = 8.8709406962545514830200e2; | ||
|
||
const T B0 = 1.0000000000000000000e0; | ||
const T B1 = 4.2313330701600911252e1; | ||
const T B2 = 6.8718700749205790830e2; | ||
const T B3 = 5.3941960214247511077e3; | ||
const T B4 = 2.1213794301586595867e4; | ||
const T B5 = 3.9307895800092710610e4; | ||
const T B6 = 2.8729085735721942674e4; | ||
const T B7 = 5.2264952788528545610e3; | ||
|
||
const T C0 = 1.42343711074968357734e0; | ||
const T C1 = 4.63033784615654529590e0; | ||
const T C2 = 5.76949722146069140550e0; | ||
const T C3 = 3.64784832476320460504e0; | ||
const T C4 = 1.27045825245236838258e0; | ||
const T C5 = 2.41780725177450611770e-1; | ||
const T C6 = 2.27238449892691845833e-2; | ||
const T C7 = 7.74545014278341407640e-4; | ||
|
||
const T D0 = 1.4142135623730950488016887e0; | ||
const T D1 = 2.9036514445419946173133295e0; | ||
const T D2 = 2.3707661626024532365971225e0; | ||
const T D3 = 9.7547832001787427186894837e-1; | ||
const T D4 = 2.0945065210512749128288442e-1; | ||
const T D5 = 2.1494160384252876777097297e-2; | ||
const T D6 = 7.7441459065157709165577218e-4; | ||
const T D7 = 1.4859850019840355905497876e-9; | ||
|
||
const T E0 = 6.65790464350110377720e0; | ||
const T E1 = 5.46378491116411436990e0; | ||
const T E2 = 1.78482653991729133580e0; | ||
const T E3 = 2.96560571828504891230e-1; | ||
const T E4 = 2.65321895265761230930e-2; | ||
const T E5 = 1.24266094738807843860e-3; | ||
const T E6 = 2.71155556874348757815e-5; | ||
const T E7 = 2.01033439929228813265e-7; | ||
|
||
const T F0 = 1.414213562373095048801689e0; | ||
const T F1 = 8.482908416595164588112026e-1; | ||
const T F2 = 1.936480946950659106176712e-1; | ||
const T F3 = 2.103693768272068968719679e-2; | ||
const T F4 = 1.112800997078859844711555e-3; | ||
const T F5 = 2.611088405080593625138020e-5; | ||
const T F6 = 2.010321207683943062279931e-7; | ||
const T F7 = 2.891024605872965461538222e-15; | ||
|
||
T abs_x = abs(x); | ||
|
||
if (abs_x <= 0.85) { | ||
T r = 0.180625 - 0.25 * x * x; | ||
T num = | ||
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) * | ||
r + | ||
A0); | ||
T den = | ||
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) * | ||
r + | ||
B0); | ||
return x * num / den; | ||
} | ||
|
||
T r = sqrt(LN2 - log(1.0 - abs_x)); | ||
|
||
T num, den; | ||
if (r <= 5.0) { | ||
r = r - 1.6; | ||
num = | ||
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) * | ||
r + | ||
C0); | ||
den = | ||
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) * | ||
r + | ||
D0); | ||
} else { | ||
r = r - 5.0; | ||
num = | ||
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) * | ||
r + | ||
E0); | ||
den = | ||
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) * | ||
r + | ||
F0); | ||
} | ||
|
||
if (x < 0) { | ||
return -num / den; | ||
} else { | ||
return num / den; | ||
} | ||
} | ||
|
||
template <typename T> | ||
struct TruncatedNormal { | ||
T mean, std; | ||
T a_normal_cdf; | ||
T b_normal_cdf; | ||
TruncatedNormal(T mean, T std) : mean(mean), std(std) { | ||
auto normal_cdf = [](T x) { | ||
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0; | ||
}; | ||
a_normal_cdf = normal_cdf(-2.0); | ||
b_normal_cdf = normal_cdf(2.0); | ||
} | ||
|
||
T operator()(T value) const { | ||
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value; | ||
return (std::sqrt(2.0) * Erfinv(2 * p - 1) + mean) * std; | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class CPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
float mean = context.Attr<float>("mean"); | ||
float std = context.Attr<float>("std"); | ||
auto* tensor = context.Output<framework::Tensor>("Out"); | ||
T* data = tensor->mutable_data<T>(context.GetPlace()); | ||
|
||
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed")); | ||
std::minstd_rand engine; | ||
if (seed == 0) { | ||
seed = std::random_device()(); | ||
} | ||
engine.seed(seed); | ||
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(), | ||
1.0); | ||
TruncatedNormal<T> truncated_normal(mean, std); | ||
int64_t size = tensor->numel(); | ||
for (int64_t i = 0; i < size; ++i) { | ||
data[i] = truncated_normal(dist(engine)); | ||
} | ||
} | ||
}; | ||
|
||
class TruncatedGaussianRandomOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE( | ||
ctx->HasOutput("Out"), | ||
"Output(Out) of TruncatedGaussianRandomOp should not be null."); | ||
auto shape = ctx->Attrs().Get<std::vector<int>>("shape"); | ||
std::vector<int64_t> out_dim; | ||
out_dim.reserve(shape.size()); | ||
for (auto dim : shape) { | ||
out_dim.push_back(static_cast<int64_t>(dim)); | ||
} | ||
PADDLE_ENFORCE(shape.size() > 0UL, | ||
"shape can be one int or array. shape must be set."); | ||
ctx->SetOutputDim("Out", framework::make_ddim(out_dim)); | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext& ctx) const override { | ||
framework::LibraryType library{framework::LibraryType::kPlain}; | ||
framework::DataLayout layout{framework::DataLayout::kAnyLayout}; | ||
return framework::OpKernelType( | ||
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")), | ||
ctx.device_context(), layout, library); | ||
} | ||
}; | ||
|
||
class TruncatedGaussianRandomOpMaker | ||
: public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddOutput("Out", "Output tensor of truncated gaussian random op."); | ||
|
||
AddAttr<std::vector<int>>("shape", | ||
"(vector<int>) " | ||
"The dimension of random tensor."); | ||
AddAttr<float>("mean", | ||
"(float, default 0.0) " | ||
"mean of random tensor.") | ||
.SetDefault(.0f); | ||
AddAttr<float>("std", | ||
"(float, default 1.0) " | ||
"std of random tensor.") | ||
.SetDefault(1.0f); | ||
AddAttr<int>("seed", | ||
"(int, default 0) " | ||
"Random seed of generator." | ||
"0 means use system wide seed." | ||
"Note that if seed is not 0, this operator will always " | ||
"generate the same random numbers every time.") | ||
.SetDefault(0); | ||
AddAttr<int>("dtype", | ||
"(int, default 5(FP32)) " | ||
"Output data type.") | ||
.SetDefault(framework::proto::VarType::FP32); | ||
AddComment(R"DOC( | ||
TruncatedGaussianRandom Operator. | ||
Used to initialize tensors with truncated gaussian random generator. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_WITHOUT_GRADIENT(truncated_gaussian_random, | ||
ops::TruncatedGaussianRandomOp, | ||
ops::TruncatedGaussianRandomOpMaker); | ||
REGISTER_OP_CPU_KERNEL(truncated_gaussian_random, | ||
ops::CPUTruncatedGaussianRandomKernel<float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <thrust/random.h> | ||
#include <thrust/transform.h> | ||
#include <limits> | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename T> | ||
struct TruncatedNormal { | ||
T mean, std; | ||
T a_normal_cdf; | ||
T b_normal_cdf; | ||
unsigned int seed; | ||
T numeric_min; | ||
|
||
__host__ __device__ TruncatedNormal(T mean, T std, T numeric_min, int seed) | ||
: mean(mean), std(std), seed(seed), numeric_min(numeric_min) { | ||
a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0; | ||
b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0; | ||
} | ||
|
||
__host__ __device__ T operator()(const unsigned int n) const { | ||
thrust::minstd_rand rng; | ||
rng.seed(seed); | ||
thrust::uniform_real_distribution<T> dist(numeric_min, 1); | ||
rng.discard(n); | ||
T value = dist(rng); | ||
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value; | ||
return (std::sqrt(2.0) * erfinvf(2 * p - 1) + mean) * std; | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class GPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* tensor = context.Output<framework::Tensor>("Out"); | ||
T* data = tensor->mutable_data<T>(context.GetPlace()); | ||
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed")); | ||
if (seed == 0) { | ||
std::random_device rd; | ||
seed = rd(); | ||
} | ||
T mean = static_cast<T>(context.Attr<float>("mean")); | ||
T std = static_cast<T>(context.Attr<float>("std")); | ||
thrust::counting_iterator<unsigned int> index_sequence_begin(0); | ||
int64_t size = tensor->numel(); | ||
thrust::transform( | ||
index_sequence_begin, index_sequence_begin + size, | ||
thrust::device_ptr<T>(data), | ||
TruncatedNormal<T>(mean, std, std::numeric_limits<T>::min(), seed)); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OP_CUDA_KERNEL( | ||
truncated_gaussian_random, | ||
paddle::operators::GPUTruncatedGaussianRandomKernel<float>); |
Oops, something went wrong.