Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
#include "funcs/cast_functor.h"
#include "common/micros.h"

using colossalAI::cuda::utils::copy_vector;
using colossalAI::cuda::utils::get_vec_size;
using colossalAI::cuda::utils::copy;
using colossalAI::funcs::CastFunctor;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@
#include "funcs/cast_functor.h"
#include "funcs/binary_functor.h"

using colossalAI::cuda::utils::copy_vector;
using colossalAI::cuda::utils::get_vec_size;
using colossalAI::cuda::utils::copy;
using colossalAI::funcs::CastFunctor;
Expand Down
6 changes: 3 additions & 3 deletions extensions/csrc/kernel/cuda/get_cos_and_sin_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
#include "utils/vec_copy.h"
#include "common/micros.h"

using colossalAI::cuda::utils::copy_vector;
using colossalAI::cuda::utils::copy;
using colossalAI::cuda::utils::get_vec_size;


Expand All @@ -23,8 +23,8 @@ __device__ void apply_cos_and_sin_memcopy(
int begin_id = threadIdx.x * VecSize;

for (; begin_id <= head_dim - VecSize; begin_id += blockDim.x){
copy_vector<scalar_t, VecSize>(cos + dest_offset_id + begin_id, cos_cache_ptr + src_offset_id + begin_id);
copy_vector<scalar_t, VecSize>(sin + dest_offset_id + begin_id, sin_cache_ptr + src_offset_id + begin_id);
copy<scalar_t, VecSize>(cos_cache_ptr + src_offset_id + begin_id, cos + dest_offset_id + begin_id);
copy<scalar_t, VecSize>(sin_cache_ptr + src_offset_id + begin_id, sin + dest_offset_id + begin_id);
}

if (!Aligned) {
Expand Down
22 changes: 11 additions & 11 deletions extensions/csrc/kernel/cuda/scaled_masked_softmax_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ using colossalAI::funcs::UnaryOpFunctor;
using colossalAI::funcs::UnaryOpType;
using colossalAI::funcs::warp_reduce;
using colossalAI::funcs::ReduceType;
using colossalAI::cuda::utils::copy_vector;
using colossalAI::cuda::utils::copy;


/*
Expand Down Expand Up @@ -87,8 +87,8 @@ __global__ void scaled_masked_softmax_warp_forward(

if (element_index < batch_element_count) {
int itr_idx = i * element_count + it * WARP_SIZE;
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_data, src + itr_idx);
copy_vector<uint8_t, ELEMENTS_PER_LDG_STG>(temp_mask, mask + itr_idx);
copy<input_t, ELEMENTS_PER_LDG_STG>(src + itr_idx, temp_data);
copy<uint8_t, ELEMENTS_PER_LDG_STG>(mask + itr_idx, temp_mask);

#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
Expand Down Expand Up @@ -144,8 +144,8 @@ __global__ void scaled_masked_softmax_warp_forward(
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
out[element] = elements[i][it + element] / sum[i];
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(
dst + i * element_count + it * WARP_SIZE, out);
copy<output_t, ELEMENTS_PER_LDG_STG>(
out, dst + i * element_count + it * WARP_SIZE);
} else {
break;
}
Expand Down Expand Up @@ -200,10 +200,10 @@ __global__ void scaled_masked_softmax_warp_backward(
for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(
temp_grad, grad + i * element_count + it * WARP_SIZE);
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(
temp_output, output + i * element_count + it * WARP_SIZE);
copy<input_t, ELEMENTS_PER_LDG_STG>(
grad + i * element_count + it * WARP_SIZE, temp_grad);
copy<input_t, ELEMENTS_PER_LDG_STG>(
output + i * element_count + it * WARP_SIZE, temp_output);

#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
Expand Down Expand Up @@ -245,8 +245,8 @@ __global__ void scaled_masked_softmax_warp_backward(
(output_t)(scale * (grad_reg[i][it + element] -
output_reg[i][it + element] * sum[i]));
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(
gradInput + i * element_count + it * WARP_SIZE, out);
copy<output_t, ELEMENTS_PER_LDG_STG>(
out, gradInput + i * element_count + it * WARP_SIZE);
}
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,8 @@ using colossalAI::funcs::UnaryOpFunctor;
using colossalAI::funcs::UnaryOpType;
using colossalAI::funcs::warp_reduce;
using colossalAI::funcs::ReduceType;
using colossalAI::cuda::utils::copy_vector;
using colossalAI::cuda::utils::copy_zero_vector;
using colossalAI::cuda::utils::copy;
using colossalAI::cuda::utils::copy_zero;

/*
* Extended softmax (from native aten pytorch) with following additional
Expand Down Expand Up @@ -75,8 +75,8 @@ __global__ void scaled_upper_triang_masked_softmax_warp_forward(
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;

if (element_index < batch_element_count) {
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(
temp_data, src + i * element_count * stride + it * WARP_SIZE);
copy<input_t, ELEMENTS_PER_LDG_STG>(
src + i * element_count * stride + it * WARP_SIZE, temp_data);

#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
Expand Down Expand Up @@ -140,10 +140,10 @@ __global__ void scaled_upper_triang_masked_softmax_warp_forward(
out[element] = 0;
}
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(
dst + i * element_count * stride + it * WARP_SIZE, out);
copy<output_t, ELEMENTS_PER_LDG_STG>(
out, dst + i * element_count * stride + it * WARP_SIZE);
} else if (element_index < element_count) {
copy_zero_vector<output_t, ELEMENTS_PER_LDG_STG>(
copy_zero<output_t, ELEMENTS_PER_LDG_STG>(
dst + i * element_count * stride + it * WARP_SIZE);
} else {
break;
Expand Down Expand Up @@ -199,10 +199,10 @@ __global__ void scaled_upper_triang_masked_softmax_warp_backward(
for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(
temp_grad, grad + i * element_count * stride + it * WARP_SIZE);
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(
temp_output, output + i * element_count * stride + it * WARP_SIZE);
copy<input_t, ELEMENTS_PER_LDG_STG>(
grad + i * element_count * stride + it * WARP_SIZE, temp_grad);
copy<input_t, ELEMENTS_PER_LDG_STG>(
output + i * element_count * stride + it * WARP_SIZE, temp_output);

#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
Expand Down Expand Up @@ -248,8 +248,8 @@ __global__ void scaled_upper_triang_masked_softmax_warp_backward(
(output_t)(scale * (grad_reg[i][it + element] -
output_reg[i][it + element] * sum[i]));
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(
gradInput + i * element_count * stride + it * WARP_SIZE, out);
copy<output_t, ELEMENTS_PER_LDG_STG>(
out, gradInput + i * element_count * stride + it * WARP_SIZE);
}
}
}
Expand Down
19 changes: 1 addition & 18 deletions extensions/csrc/kernel/cuda/utils/vec_copy.h
Original file line number Diff line number Diff line change
Expand Up @@ -8,25 +8,8 @@ namespace colossalAI {
namespace cuda {
namespace utils {

// Note(LiuYang): Depreciated
template <typename T, int VecSize>
__device__ __inline__ void copy_vector(T *dst, const T *src) {
using VT = typename common::VecTypeTrait<T, VecSize>::Type;
*(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<const VT *>(src));
}

template <>
__device__ __inline__ void copy_vector<float, 8>(float *dst, const float *src) {
// Since the maximum memory alignment length is 128 bits, we choose float4
// here.
*(reinterpret_cast<float4 *>(dst)) = *(reinterpret_cast<const float4 *>(src));
*(reinterpret_cast<float4 *>(dst + 4)) =
*(reinterpret_cast<const float4 *>(src + 4));
}

// Note(LiuYang): Depreciated
template <typename T, int VecSize>
__device__ __inline__ void copy_zero_vector(T *dst) {
__device__ __inline__ void copy_zero(T *dst) {
using VT = typename common::VecTypeTrait<T, VecSize>::Type;
*(reinterpret_cast<VT *>(dst)) = funcs::CastFunctor<float, VT>()(0.0f);
}
Expand Down