Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion colossalai/inference/modeling/models/padding_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,8 @@ def llama_model_forward(
sm_scale=sm_scale,
)

hidden_states = hidden_states[:, -1, :].unsqueeze(dim=1).contiguous()
if batch.is_prompts:
hidden_states = hidden_states[:, -1, :].unsqueeze(dim=1).contiguous()
hidden_states = self.norm(hidden_states)

return hidden_states
Expand Down
83 changes: 83 additions & 0 deletions tests/test_infer/test_nopadding_inference_engine.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import random

import numpy as np
import pytest
import torch
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM

import colossalai
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import rerun_if_address_is_in_use, spawn


def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)


def check_inference_engine(test_cai=False):
setup_seed(20)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = LlamaForCausalLM(
LlamaConfig(
vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=16
)
).cuda()

model = model.eval()

inputs = [
"介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,",
"介绍一下武汉,",
]

output_len = 38
do_sample = True
top_p = 0.5
top_k = 50

if test_cai:
inference_config = InferenceConfig(max_output_len=output_len, pad_input=False)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k)
outputs = inference_engine.generate(generation_config)
else:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
inputs = inputs.cuda()
generation_config = GenerationConfig(
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=output_len,
)
outputs = model.generate(inputs, generation_config=generation_config)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

return outputs


def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
cai_outputs = check_inference_engine(True)
transformer_outputs = check_inference_engine(False)

for s1, s2 in zip(cai_outputs, transformer_outputs):
assert s1 == s2


@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_inference_engine():
spawn(run_dist, 1)


if __name__ == "__main__":
test_inference_engine()
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def check_inference_engine(test_cai=False):
top_k = 50

if test_cai:
inference_config = InferenceConfig(max_output_len=output_len)
inference_config = InferenceConfig(max_output_len=output_len, pad_input=True)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
Expand Down