Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Break out statistics repairs into a auto_repairs modules #90068

Merged
merged 8 commits into from
Mar 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
"""Repairs for Recorder."""
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
"""Statistics repairs for Recorder."""
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
"""Statistics duplication repairs."""
from __future__ import annotations

import json
import logging
import os
from typing import TYPE_CHECKING

from sqlalchemy import func
from sqlalchemy.engine.row import Row
from sqlalchemy.orm.session import Session
from sqlalchemy.sql.expression import literal_column

from homeassistant.core import HomeAssistant
from homeassistant.helpers.json import JSONEncoder
from homeassistant.helpers.storage import STORAGE_DIR
from homeassistant.util import dt as dt_util

from ...const import SQLITE_MAX_BIND_VARS
from ...db_schema import Statistics, StatisticsBase, StatisticsMeta, StatisticsShortTerm
from ...util import database_job_retry_wrapper, execute

if TYPE_CHECKING:
from ... import Recorder

_LOGGER = logging.getLogger(__name__)


def _find_duplicates(
session: Session, table: type[StatisticsBase]
) -> tuple[list[int], list[dict]]:
"""Find duplicated statistics."""
subquery = (
session.query(
table.start,
table.metadata_id,
literal_column("1").label("is_duplicate"),
)
.group_by(table.metadata_id, table.start)
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
.having(func.count() > 1)
.subquery()
)
query = (
session.query(
table.id,
table.metadata_id,
table.created,
table.start,
table.mean,
table.min,
table.max,
table.last_reset,
table.state,
table.sum,
)
.outerjoin(
subquery,
(subquery.c.metadata_id == table.metadata_id)
& (subquery.c.start == table.start),
)
.filter(subquery.c.is_duplicate == 1)
.order_by(table.metadata_id, table.start, table.id.desc())
.limit(1000 * SQLITE_MAX_BIND_VARS)
)
duplicates = execute(query)
original_as_dict = {}
start = None
metadata_id = None
duplicate_ids: list[int] = []
non_identical_duplicates_as_dict: list[dict] = []

if not duplicates:
return (duplicate_ids, non_identical_duplicates_as_dict)

def columns_to_dict(duplicate: Row) -> dict:
"""Convert a SQLAlchemy row to dict."""
dict_ = {}
for key in (
"id",
"metadata_id",
"start",
"created",
"mean",
"min",
"max",
"last_reset",
"state",
"sum",
):
dict_[key] = getattr(duplicate, key)
return dict_

def compare_statistic_rows(row1: dict, row2: dict) -> bool:
"""Compare two statistics rows, ignoring id and created."""
ignore_keys = {"id", "created"}
keys1 = set(row1).difference(ignore_keys)
keys2 = set(row2).difference(ignore_keys)
return keys1 == keys2 and all(row1[k] == row2[k] for k in keys1)

for duplicate in duplicates:
if start != duplicate.start or metadata_id != duplicate.metadata_id:
original_as_dict = columns_to_dict(duplicate)
start = duplicate.start
metadata_id = duplicate.metadata_id
continue
duplicate_as_dict = columns_to_dict(duplicate)
duplicate_ids.append(duplicate.id)
if not compare_statistic_rows(original_as_dict, duplicate_as_dict):
non_identical_duplicates_as_dict.append(
{"duplicate": duplicate_as_dict, "original": original_as_dict}
)

return (duplicate_ids, non_identical_duplicates_as_dict)


def _delete_duplicates_from_table(
session: Session, table: type[StatisticsBase]
) -> tuple[int, list[dict]]:
"""Identify and delete duplicated statistics from a specified table."""
all_non_identical_duplicates: list[dict] = []
total_deleted_rows = 0
while True:
duplicate_ids, non_identical_duplicates = _find_duplicates(session, table)
if not duplicate_ids:
break
all_non_identical_duplicates.extend(non_identical_duplicates)
for i in range(0, len(duplicate_ids), SQLITE_MAX_BIND_VARS):
deleted_rows = (
session.query(table)
.filter(table.id.in_(duplicate_ids[i : i + SQLITE_MAX_BIND_VARS]))
.delete(synchronize_session=False)
)
total_deleted_rows += deleted_rows
return (total_deleted_rows, all_non_identical_duplicates)


@database_job_retry_wrapper("delete statistics duplicates", 3)
def delete_statistics_duplicates(
instance: Recorder, hass: HomeAssistant, session: Session
) -> None:
"""Identify and delete duplicated statistics.

A backup will be made of duplicated statistics before it is deleted.
"""
deleted_statistics_rows, non_identical_duplicates = _delete_duplicates_from_table(
session, Statistics
)
if deleted_statistics_rows:
_LOGGER.info("Deleted %s duplicated statistics rows", deleted_statistics_rows)

if non_identical_duplicates:
isotime = dt_util.utcnow().isoformat()
backup_file_name = f"deleted_statistics.{isotime}.json"
backup_path = hass.config.path(STORAGE_DIR, backup_file_name)

os.makedirs(os.path.dirname(backup_path), exist_ok=True)
with open(backup_path, "w", encoding="utf8") as backup_file:
json.dump(
non_identical_duplicates,
backup_file,
indent=4,
sort_keys=True,
cls=JSONEncoder,
)
_LOGGER.warning(
(
"Deleted %s non identical duplicated %s rows, a backup of the deleted"
" rows has been saved to %s"
),
len(non_identical_duplicates),
Statistics.__tablename__,
backup_path,
)

deleted_short_term_statistics_rows, _ = _delete_duplicates_from_table(
session, StatisticsShortTerm
)
if deleted_short_term_statistics_rows:
_LOGGER.warning(
"Deleted duplicated short term statistic rows, please report at %s",
"https://github.com/home-assistant/core/issues?q=is%3Aopen+is%3Aissue+label%3A%22integration%3A+recorder%22",
)


def _find_statistics_meta_duplicates(session: Session) -> list[int]:
"""Find duplicated statistics_meta."""
# When querying the database, be careful to only explicitly query for columns
# which were present in schema version 29. If querying the table, SQLAlchemy
# will refer to future columns.
subquery = (
session.query(
StatisticsMeta.statistic_id,
literal_column("1").label("is_duplicate"),
)
.group_by(StatisticsMeta.statistic_id)
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
.having(func.count() > 1)
.subquery()
)
query = (
session.query(StatisticsMeta.statistic_id, StatisticsMeta.id)
.outerjoin(
subquery,
(subquery.c.statistic_id == StatisticsMeta.statistic_id),
)
.filter(subquery.c.is_duplicate == 1)
.order_by(StatisticsMeta.statistic_id, StatisticsMeta.id.desc())
.limit(1000 * SQLITE_MAX_BIND_VARS)
)
duplicates = execute(query)
statistic_id = None
duplicate_ids: list[int] = []

if not duplicates:
return duplicate_ids

for duplicate in duplicates:
if statistic_id != duplicate.statistic_id:
statistic_id = duplicate.statistic_id
continue
duplicate_ids.append(duplicate.id)

return duplicate_ids


def _delete_statistics_meta_duplicates(session: Session) -> int:
"""Identify and delete duplicated statistics from a specified table."""
total_deleted_rows = 0
while True:
duplicate_ids = _find_statistics_meta_duplicates(session)
if not duplicate_ids:
break
for i in range(0, len(duplicate_ids), SQLITE_MAX_BIND_VARS):
deleted_rows = (
session.query(StatisticsMeta)
.filter(
StatisticsMeta.id.in_(duplicate_ids[i : i + SQLITE_MAX_BIND_VARS])
)
.delete(synchronize_session=False)
)
total_deleted_rows += deleted_rows
return total_deleted_rows


@database_job_retry_wrapper("delete statistics meta duplicates", 3)
def delete_statistics_meta_duplicates(instance: Recorder, session: Session) -> None:
"""Identify and delete duplicated statistics_meta.

This is used when migrating from schema version 28 to schema version 29.
"""
deleted_statistics_rows = _delete_statistics_meta_duplicates(session)
if deleted_statistics_rows:
statistics_meta_manager = instance.statistics_meta_manager
statistics_meta_manager.reset()
statistics_meta_manager.load(session)
_LOGGER.info(
"Deleted %s duplicated statistics_meta rows", deleted_statistics_rows
)
Loading