forked from braindotai/Watermark-Removal-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
672fe1b
commit bf58184
Showing
1 changed file
with
65 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
from torch import optim | ||
|
||
from helper import * | ||
from model.generator import SkipEncoderDecoder, input_noise | ||
|
||
def remove_watermark(image_path, mask_path, max_dim, reg_noise, input_depth, lr, show_step, training_steps): | ||
DTYPE = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor | ||
if not torch.cuda.is_available(): | ||
print('\nSetting device to "cpu", since torch is not built with "cuda" support...') | ||
print('It is recommended to use GPU if possible...') | ||
|
||
image_np, mask_np = preprocess_images(image_path, mask_path, max_dim) | ||
|
||
print('Building the model...') | ||
generator = SkipEncoderDecoder( | ||
input_depth, | ||
num_channels_down = [128] * 5, | ||
num_channels_up = [128] * 5, | ||
num_channels_skip = [128] * 5 | ||
).type(DTYPE) | ||
|
||
objective = torch.nn.MSELoss().type(DTYPE) | ||
optimizer = optim.Adam(generator.parameters(), lr) | ||
|
||
image_var = np_to_torch_array(image_np).type(DTYPE) | ||
mask_var = np_to_torch_array(mask_np).type(DTYPE) | ||
|
||
generator_input = input_noise(input_depth, image_np.shape[1:]).type(DTYPE) | ||
|
||
generator_input_saved = generator_input.detach().clone() | ||
noise = generator_input.detach().clone() | ||
|
||
print('Starting training...') | ||
|
||
progress_bar = tqdm(range(training_steps), desc = 'Completed', ncols = 100) | ||
|
||
for step in progress_bar: | ||
optimizer.zero_grad() | ||
generator_input = generator_input_saved | ||
|
||
if reg_noise > 0: | ||
generator_input = generator_input_saved + (noise.normal_() * reg_noise) | ||
|
||
output = generator(generator_input) | ||
|
||
loss = objective(output * mask_var, image_var * mask_var) | ||
loss.backward() | ||
|
||
if step % show_step == 0: | ||
output_image = torch_to_np_array(output) | ||
visualize_sample(image_np, output_image, nrow = 2, size_factor = 10) | ||
|
||
progress_bar.set_postfix(Loss = loss.item()) | ||
|
||
optimizer.step() | ||
|
||
output_image = torch_to_np_array(output) | ||
visualize_sample(output_image, nrow = 1, size_factor = 10) | ||
|
||
pil_image = Image.fromarray((output_image.transpose(1, 2, 0) * 255.0).astype('uint8')) | ||
|
||
output_path = image_path.split('.')[-2] + '-without-watermark.jpg' | ||
print(f'\nSaving final output image to: "{output_path}"') | ||
|
||
pil_image.save(output_path) |