Implement domain-independent search technique to solve deterministic logistics planning problems for an Air Cargo transport system using a planning search agent. Unlike the navigation problem, there is no simple distance heuristic to aid the agent.
- This project run on Python 3.5
- Install the require packages using the following script
pip install -r requirements.txt
- Run the following script to experiement
problem 2
andsearch method 8
python run_search.py -p 2 -s 8
- For more search method
python run_search.py -h
- Init state
Init(At(C1, SFO) ∧ At(C2, JFK)
∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2)
∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO))
- Goal state
Goal(At(C1, JFK) ∧ At(C2, SFO))
- Init state
Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(C3, ATL)
∧ At(P1, SFO) ∧ At(P2, JFK) ∧ At(P3, ATL)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Cargo(C3)
∧ Plane(P1) ∧ Plane(P2) ∧ Plane(P3)
∧ Airport(JFK) ∧ Airport(SFO) ∧ Airport(ATL))
- Goal state
Goal(At(C1, JFK) ∧ At(C2, SFO) ∧ At(C3, SFO))
- Init state
Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(C3, ATL) ∧ At(C4, ORD)
∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Cargo(C3) ∧ Cargo(C4)
∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO) ∧ Airport(ATL) ∧ Airport(ORD))
- Goal state
Goal(At(C1, JFK) ∧ At(C3, JFK) ∧ At(C2, SFO) ∧ At(C4, SFO))