Skip to content

A production-grade platform for monitoring, validating, and maintaining ML models in real-world environments.

License

Notifications You must be signed in to change notification settings

hmm29/mlops-observability

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

14 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MLOps Observability Platform

A production-grade platform for monitoring, validating, and maintaining ML models in real-world environments with comprehensive observability and alerting.

πŸš€ Features

  • Model Observability: Comprehensive metrics collection for model performance monitoring
  • Data Validation: Schema validation and data quality checks for production traffic
  • Drift Detection: Statistical methods to detect and quantify data drift in real-time
  • Model Registry: Version management and lifecycle tracking for ML models
  • Performance Visualization: Pre-built Grafana dashboards for real-time monitoring
  • Alerting: Configurable alerts for model degradation and data quality issues
  • Testing Framework: End-to-end and integration test suites to validate platform functionality

🚧 Architecture

This platform implements a layered architecture:

  1. API Layer: FastAPI for model serving and monitoring endpoints with built-in observability
  2. Validation Layer: Automated schema and data drift checks for data quality assurance
  3. Monitoring Layer: Prometheus for metrics collection and storage with custom metrics
  4. Model Registry: MLflow for versioning, metadata, and lifecycle management
  5. Visualization Layer: Grafana dashboards with performance visualization and alerting

The architecture follows best practices for observability with separation of concerns and modular design:

Architecture Diagram

πŸ“¦ Project Structure

mlops-observability/
β”œβ”€β”€ README.md
β”œβ”€β”€ architecture.png
β”œβ”€β”€ docker-compose.yml
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ api/
β”‚   β”œβ”€β”€ monitoring/
β”‚   β”œβ”€β”€ data_validation/
β”‚   β”œβ”€β”€ model_registry/
β”‚   └── dashboard/
└── tests/

Model Registry

The Model Registry component provides a centralized repository for model versioning, metadata tracking, and lifecycle management. Key features include:

  • Model versioning and storage
  • Model metadata and lineage tracking
  • Performance metrics comparison between versions
  • Stage transitions (development β†’ staging β†’ production)
  • Integration with monitoring systems for observability

Usage Example

from src.model_registry.client import ModelRegistry
from src.model_registry.version import compare_model_versions

# Initialize registry client
registry = ModelRegistry(tracking_uri="http://mlflow-server:5000")

# Register a new model
model_uri = registry.register_model(
    model_path="s3://models/model.pkl",
    name="fraud_detection",
    tags={"algorithm": "xgboost", "owner": "data-science-team"}
)

# Compare different model versions
comparison = compare_model_versions(
    registry,
    model_name="fraud_detection",
    version1="1",
    version2="2",
    metric="auc"
)

βš™οΈ Installation & Setup

Prerequisites

  • Docker and Docker Compose
  • Python 3.8+
  • Git

Quickstart

  1. Clone the repo:

    git clone https://github.com/hmm29/mlops-observability.git
    cd mlops-observability
  2. Start the monitoring stack:

    docker-compose -f docker/docker-compose-grafana.yml up -d
  3. Access services:

    • API: http://localhost:8000
    • Grafana: http://localhost:3000 (login: admin/admin)
    • Prometheus: http://localhost:9090

For detailed setup instructions, see SETUP.md.

πŸ“ Implementation Highlights

Model Monitoring Components

  • Comprehensive Metrics Collection:

    • Real-time performance metrics tracking
    • Request volume and latency monitoring
    • Error tracking and categorization
  • Data Quality Monitoring:

    • Feature drift detection using KS tests
    • Input validation and schema enforcement
    • Automated anomaly detection
  • Visualization & Alerting:

    • Interactive Grafana dashboards with performance panels
    • Real-time alerting for drift detection
    • Customizable notification channels

πŸ“ Current Status

βœ… Completed Components:

  • Model Registry implementation
  • Data Validation (Drift Detection and Schema Validation)
  • Unit tests for model registry
  • Metrics Collection Service
    • Prometheus metrics collector
    • Model performance metrics
    • System health monitoring
  • API Endpoints
    • FastAPI model serving
    • Prediction monitoring
    • Swagger UI documentation
  • Dashboard implementation
    • Grafana dashboards for model monitoring
    • Performance visualization panels
    • Data drift monitoring
  • Alerting configuration
    • Feature drift alerts
    • High error rate detection
    • Latency threshold monitoring
  • Comprehensive Testing
    • Integration tests
    • End-to-end tests
    • Unit tests for model registry
  • Documentation
    • API documentation
    • Setup instructions
    • Deployment guides

πŸ“ Next Steps

  1. Extended Monitoring Features:

    • A/B testing support
    • Multi-model comparison dashboards
    • Custom user-defined metrics
  2. Enhanced Testing:

    • Load testing framework
    • Chaos engineering tests
    • Continuous integration pipelines
  3. Advanced Features:

    • Automated model retraining triggers
    • Custom notification channels
    • Advanced data quality monitoring

🧹 Testing Framework

Integration Tests

Our integration tests validate component interactions:

# Run integration tests
pytest tests/test_integration.py

These tests verify:

  • API prediction endpoints
  • Input validation mechanisms
  • Metrics collection
  • Drift detection algorithms

End-to-End Tests

Complete system validation is done through E2E tests:

# Run E2E tests
pytest tests/test_e2e.py

These tests confirm:

  • Full prediction workflow from request to visualization
  • Data drift detection and alerting
  • Grafana dashboard accessibility
  • System resilience under various conditions

Detailed testing documentation is available in tests/README.md.

πŸ” Usage

Making Predictions

import requests
import json

# Send prediction request to the API
url = "http://localhost:8000/predict"
payload = {
    "features": {
        "feature1": 0.5,
        "feature2": 1.0,
        "feature3": "category_a"
    },
    "request_id": "test-123"
}

response = requests.post(url, json=payload)
prediction = response.json()
print(prediction)

Model Drift Monitoring

from src.monitoring.metrics import MLMetricsCollector
from src.data_validation.drift import DriftDetector
import pandas as pd

# Initialize metrics collector
metrics = MLMetricsCollector(model_name="fraud_detection", version="1.0")

# Track model performance
with metrics.track_predictions():
    predictions = model.predict(features)
    
# Check for data drift
detector = DriftDetector(reference_data=training_data)
results = detector.detect_drift(current_data, threshold=0.05)

if results["drift_detected"]:
    print(f"Drift detected in features: {results['flagged_features']}")

Registering a New Model

from src.model_registry.client import ModelRegistry

registry = ModelRegistry(tracking_uri="http://mlflow-server:5000")
model_uri = registry.register_model(
    model_path="path/to/model.pkl",
    name="fraud_detection",
    tags={"algorithm": "xgboost", "version": "1.0.0"}
)

πŸ‘ Development

Directory Structure

mlops-observability/
β”œβ”€β”€ docker/                 # Docker configuration files
β”‚   β”œβ”€β”€ prometheus/         # Prometheus configuration
β”‚   └── grafana/            # Grafana provisioning
β”œβ”€β”€ grafana/                # Grafana dashboards and alerts
β”‚   β”œβ”€β”€ dashboards/         # Dashboard templates
β”‚   └── alerts/             # Alert configurations
β”œβ”€β”€ src/                    # Source code
β”‚   β”œβ”€β”€ api/                # FastAPI service
β”‚   β”œβ”€β”€ monitoring/         # Metrics collection
β”‚   β”œβ”€β”€ data_validation/    # Schema and drift detection
β”‚   └── model_registry/     # Model versioning
└── tests/                  # Test suite
    β”œβ”€β”€ model_registry/     # Unit tests
    β”œβ”€β”€ test_integration.py # Integration tests
    └── test_e2e.py         # End-to-end tests

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Implement your changes
  4. Add tests for your implementation
  5. Update documentation as needed
  6. Commit your changes (git commit -m 'Add amazing feature')
  7. Push to the branch (git push origin feature/amazing-feature)
  8. Open a Pull Request

πŸ’‘ Conclusion

The MLOps Observability Platform provides a comprehensive solution for monitoring ML models in production environments. With real-time performance tracking, data quality monitoring, and automated alerting, it helps teams maintain reliable AI systems at scale.

Key benefits:

  • Early detection of model degradation
  • Proactive data quality management
  • Streamlined MLOps workflows
  • Enhanced model reliability and user trust

For detailed setup and usage instructions, refer to SETUP.md.

πŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.

About

A production-grade platform for monitoring, validating, and maintaining ML models in real-world environments.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published