There is a multiplicity of applications requiring the computation of averages of various functions over the unitary groups in dimension
Weingarten functions depend only on a class of symmetric group
with
where
with the integral
This note describes the workings of a Mathematica code to quickly evaluate Weingarten functions as given in Eq. (2). The code is built on an implementation of the Murnaghan-Nakayama rule for the characters irreducible representations of the symmetric group
The code contains two main functions: eWg and cWg. The functions differ in their arguments, as explained in details a little later. The LHS of Eq. (2) is seen to depend on the product
The cWg functions takes as input a class and a dimension parameter
cWg[class_,d_]
and returns the RHS of Eq. (2). Classes are partitions inside curly brackets.
Thus for instance:
In[1]:= cWg[{3,1},d]
Out[1]:=
$\frac{-3+2 d^2}{(-3+d) (-2+d) (-1+d) {d}^{2}(1+d) (2+d) (3+d)}$
is the Weingarten function for the integration of
The function eWg has slightly different inputs:
eWg[sigma_,p_,d_]
Mathematica constructs elements of
In[2]:= eWg[Cycles[{{2,3,4}}],4,d]
Out[2]:=
$\frac{-3+2d^2}{(d-3)(d-2)(d-1)d^2 (1+d) (2+d) (3+d)}$
The dimension
In[3]:= cWg[Cycles[{{3,1}}],6]
Out[3]:=
$\frac{23}{362880}$
This function comes from the code of [10]. The inputs are a partition and a class:
murnNaka[partition_,class_]
The output is the character of the elements in "class" of the irrep of the symmetric group labelled by "partition". For example:
In[4]:= murnNaka[{3,1},{1,1,1,1}]
Out[4]:=
$3$
which is also the dimension of irrep
This function inputs an element in
getClass[p_,cycles_]
For example:
In[5]:= getClass[4,Cycles[{{1,2,3}}]]
Out[5]:=
${3,1}$
This function inputs a "partition"
snDimension[partition_]
and returns the dimension of the irrep of
In[6]:= snDimension[{5,4,2,1,1,1}] Out[6]:=
$63063$
snDimension gives the same result as murnNaka when the class is
This functions outputs the dimension of the
udDimension[ppartition_, d_].
Thus, for the partition
In[7]:= udDimension[{5,4,2,1,1,1},d]
Out[7]:=
$\frac{(-5+d) (-4+d) (-3+d) (-2+d) (-1+d)^{2}{d}^{2} (1+d)^{2} (2+d)^{2} (3+d) (4+d)}{1382400}$ In[8]:= udDimension[{5,4,2,1,1,1},8]
Out[8]:
$873180$
The dimension
In[9]:= udDimension[{5,4,2,1,1,1},4] Out[9]:
$0$
This functions outputs the number of elements in the class of
gClass[partition_]
Thus, for the partition
In[10]:= gClass[{5,1,1},4]
Out[10]:
$504$
Class | Wg |
---|---|
Class | Wg |
---|---|
{3} | |
{2,1} | |
{1,1,1} |
Class | Wg |
---|---|
{4} | |
{3,1} | |
{2,2} | |
{2,1,1} | |
{1,1,1,1} |
Class | Wg |
---|---|
{5} | |
{4,1} | |
{3,2} | |
{3,1,1} | |
{2,2,1} | |
{2,1,1,1} | |
{1,1,1,1,1} |
Class | Wg |
---|---|
{6} | |
{5,1} | |
{4,2} | |
{4,1,1} | |
{3,3} | |
{3,2,1} | |
{3,1,1,1} | |
{2,2,2} | |
{2,2,1,1} | |
{2,1,1,1,1} | |
{1,1,1,1,1,1} |
This work was supported by ACFAS through their Programme de coopération en recherche dans la francophonie canadienne. I would like to thank Dr. Nicolás Quesada and his group for their hospitality during two visits at École Polytechnique in Montréal and for testing the package, and David Amaro-Alcala for checking the source code of the
Please cite as:
@software{deGuiseWeingit,
author = {Hubert de Guise},
title = {{weingarten_package: A Mathematica package for unitary Weingarten functions}},
publisher={GitHub},
journal={GitHub repository},
howpublished = {\url{https://github.com/hdeguise/Weingarten_calculus}}
year = {2024},
}
-
P A Mello. “Averages on the unitary group and applications to the problem of disordered conductors”. In: Journal of Physics A: Mathematical and General 23.18 (1990), p. 4061.
-
Stuart Samuel. “U(N) Integrals, 1/N, and the De Wit–’t Hooft anomalies”. In: Journal of Mathematical Physics 21.12 (1980), pp. 2695–2703.
-
Sho Matsumoto. “Moments of a single entry of circular orthogonal ensembles and Weingarten calculus”. In: Letters in Mathematical Physics 103 (2013), pp. 113–130.
-
Don Weingarten. “Asymptotic behavior of group integrals in the limit of infinite rank”. In: Journal of Mathematical Physics 19.5 (1978), pp. 999–1001.
-
Benoît Collins and Piotr Śniady. “Integration with respect to the Haar measure on unitary, orthogonal and symplectic group”. In: Communications in Mathematical Physics 264.3 (2006), pp. 773–795.
-
Marcel Novaes. “Elementary derivation of Weingarten functions of classical Lie groups”. In: arXiv preprint arXiv:1406.2182 (2014).
-
Thomas Gorin. “Integrals of monomials over the orthogonal group”. In: Journal of Mathematical Physics 43.6 (2002), pp. 3342–3351.
-
T Gorin and GV López. “Monomial integrals on the classical groups”. In: Journal of Mathematical Physics 49.1 (2008).
-
Benoít Collins and Sho Matsumoto. “On some properties of orthogonal Weingarten functions”. In: Journal of Mathematical Physics 50.11 (2009).
-
Justin Kulp. Murnahan-Nakayama. 2014. url: https://github.com/justinkulp/MurnaghanNakayama.
-
Rutwig Campoamor-Stursberg and Michel Rausch De Traubenberg. Group theory in physics: a practitioner’s guide. World Scientific.