Pymilvus only supports python >= 3.5
, is fully tested under 3.5, 3.6, 3.7.
Pymilvus can be downloaded via pip
. If no use, try pip3
$ pip install pymilvus
Different versions of Milvus and lowest/highest pymilvus version supported accordingly
Milvus version | Recommended pymilvus version |
---|---|
0.3.0 | 0.1.13 |
0.3.1 | 0.1.25 |
0.4.0 | 0.2.2 |
0.5.0 | 0.2.3 |
You can download a specific version by:
$ pip install pymilvus==0.2.3
If you want to upgrade pymilvus
to newest version
$ pip install --upgrade pymilvus
from milvus import Milvus, IndexType, MetricType, Status
Initial a Milvus
instance and connect
to the sever
>>> milvus = Milvus()
>>> milvus.connect(host='localhost', port='19530')
Status(code=0, message='Successfully connected! localhost:19530')
Once successfully connected, you can get the version of server
>>> milvus.server_version()
(Status(code=0, message='Success'), '0.5.0') # this is example version, the real version may vary
Add a new table
First set param
>>> dim = 32 # Dimension of the vector
>>> param = {'table_name':'test01', 'dimension':dim, 'index_file_size':1024, 'metric_type':MetricType.L2}
Then create table
>>> milvus.create_table(param)
Status(code=0, message='Create table successfully!')
Describe the table we just created
>>> milvus.describe_table('test01')
(Status(code=0, message='Describe table successfully!'), TableSchema(table_name='test01', dimension=32, index_file_size=1024, metric_type=<MetricType: L2>))
Add vectors into table test01
First create 20 vectors of 256-dimension.
- Note that
random
andpprint
we used here is for creating fake vectors data and pretty print, you may not need them in your project
>>> import random
>>> from pprint import pprint
# Initialize 20 vectors of 256-dimension
>>> vectors = [[random.random() for _ in range(dim)] for _ in range(20)]
Then add vectors into table test01
>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors)
>>> print(status)
Status(code=0, message='Add vectors successfully!')
>>> pprint(ids) # List of ids returned
[1571123848227800000,
1571123848227800001,
...........
1571123848227800018,
1571123848227800019]
You can also specify vectors id
>>> vector_ids = [i for i in range(20)]
>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors, ids=vector_ids)
>>> pprint(ids)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Get vectors num
>>> milvus.get_table_row_count('test01')
(Status(code=0, message='Success!'), 20)
Load vectors into memory
>>> milvus.preload_table('test01')
Status(code=0, message='')
Create index
>>> index_param = {'index_type': IndexType.FLAT, 'nlist': 128}
>>> milvus.create_index('test01', index_param)
Status(code=0, message='Build index successfully!')
Then show index information
>>> milvus.describe_index('test01')
(Status(code=0, message='Successfully'), IndexParam(_table_name='test01', _index_type=<IndexType: FLAT>, _nlist=128))
Search vectors
# create 5 vectors of 256-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]
Then get results
>>> status, results = milvus.search_vectors(table_name='test01', query_records=q_records, top_k=1, nprobe=16)
>>> print(status)
Status(code=0, message='Search vectors successfully!')
>>> pprint(results) # Searched top_k vectors
[
[(id:15, distance:2.855304718017578),
(id:16, distance:3.040700674057007)],
[(id:11, distance:3.673950433731079),
(id:15, distance:4.183730602264404)],
........
[(id:6, distance:4.065953254699707),
(id:1, distance:4.149323463439941)]
]
Drop index
>>> milvus.drop_index('test01')
Status(code=0, message='')
Delete the table we just created
>>> milvus.delete_table(table_name='test01')
Status(code=0, message='Delete table successfully!')
Disconnect with the server
>>> milvus.disconnect()
Status(code=0, message='Disconnect successfully')
There are some small examples in examples/
, you can find more guide there.
Build docs
$ sphinx-build -b html doc/en/ doc/en/build
If you encounter any problems or bugs, please open new issues