forked from JamesCBremerJr/BesselEval
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbessel_eval.f90
1902 lines (1531 loc) · 61.2 KB
/
bessel_eval.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Copyright 2017 by James Bremer
!
! This program is free software: you can redistribute it and/or modify it under the terms
! of the GNU General Public License as published by the Free Software Foundation, either
! version 3 of the License, or (at your option) any later version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
! without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
! See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! this program. If not, see <http://www.gnu.org/licenses/>.
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! This file contains code for evaluating the Bessel functions of the first and second
! kinds of real orders and arguments. For the most part, it uses the precomputed
! expansions found in the files bessel_data.bin and bessel_data16.bin to do so.
!
! More specifically, bessel_data.f90 stores representations of three different
! functions:
!
! - a nonoscillatory phase function \alpha(\nu, t), defined in the oscillatory region
! where t > \sqrt(\nu^2-1/4), such that
!
! ( 2 )^(1/2) \cos ( \alpha(\nu, t) - pi/2 \nu)
! J_\nu(t)\sqrt(t) = ( ----- ) ---------------------------------- (1)
! ( \pi t ) \sqrt( \alpha'(\nu,t) )
!
! and
!
! ( 2 )^(1/2) \sin ( \alpha(\nu, t) - pi/2 \nu)
! Y_\nu(t)\sqrt(t) = ( ----- ) ---------------------------------- (2)
! ( \pi t ) \sqrt( \alpha'(\nu,t) )
!
! - the logarithm of J_\nu(t), defined in the nonoscillatory region
! t <= \sqrt(\nu^2-1/4); and
!
! - the logarithm of -Y_\nu(t), defined in the nonoscillatory region
! t <= \sqrt(\nu^2-1/4).
!
! These precomputed expansions are supplemented with other approaches in a few cases:
!
! - In order to evaluate J_\nu(t) and Y_\nu(t) when \nu >= 2 and the argument is large
! (t > 10,000 \nu ), an asymptotic expansion of the phase function
! \alpha(t) is used;
!
! - In order to evaluate J_\nu(t) and Y_\nu(t) for \nu >= 2 and small t
! (t < \nu / 10,000), Debye's asymptotic expansions are used.
!
! - When \nu <= 2 and t <= 2, series expansions of J_\nu and Y_\nu are used.
!
! The algorithm is described in some detail in the preprint
!
! James Bremer, "An algorithm for the numerical evaluation of Bessel function real orders and
! arguments." arXiv:1705.07820.
!
! The following subroutines should be regarded as user-callable:
!
! bessel_eval_init - read the tables of precomputed expansion coefficients from
! a binary file on the disk. There are two such tables: one computed to
! double precision accuracy and the other to slightly higher (around 20 digit)
! accuracy. The higher accuracy table is loaded when "double precision"
! has been redefined as real*16 (for instance, via the -fdefault-real-8
! gfortran compiler flag).
!
! bessel_eval - evaluate the Bessel functions at a specified point (\nu,t)
! with \nu >= 0 and t > 0.
!
! In the event that (\nu,t) is in the oscillatory region (when t >= \sqrt(\nu^2-1/4)),
! the values of \alpha(\nu,t) and its derivative with respect to t are also returned.
!
! In the case that (\nu,t) is in the nonoscillatory region (when t < \sqrt(\nu^2-1/4)),
! the values of \log( J_\nu(t)) and \log( - Y_\nu(t)) are also returned.
!
! WARNING: you must call bessel_eval_init before calling this routine.
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
module besseleval
implicit double precision (a-h,o-z)
type bessel_expansion_data
integer :: ifbetas,ifover,ifsmall
double precision :: dnu1,dnu2,epsrequired
integer :: k,nintsab,nintscd,nintsef
double precision, allocatable :: ab(:,:),cd(:,:),ef(:,:)
integer :: ncoefsalpha,ncoefsalphap
double precision, allocatable :: coefsalpha(:),coefsalphap(:)
integer, allocatable :: iptrsalpha(:,:),iptrsalphap(:,:)
integer :: ncoefsbeta1,ncoefsbeta2
double precision, allocatable :: coefsbeta1(:),coefsbeta2(:)
integer, allocatable :: iptrsbeta1(:,:),iptrsbeta2(:,:)
double precision :: dmemory,time
end type bessel_expansion_data
type (bessel_expansion_data), private :: expdata1, expdata2
integer, private :: ifloaded
data ifloaded / 0 /
! Define a few constants which might be of use
double precision, private :: pi,piover2,piover4,sqrt2overpi
data pi / 3.141592653589793238462643383279502884197d0 /
data sqrt2overpi / 0.797884560802865355879892119868763736952d0 /
data piover2 / 1.570796326794896619231321691639751442099d0 /
data piover4 / 0.785398163397448309615660845819875721049d0 /
contains
subroutine bessel_eval(dnu,t,alpha,alphader,vallogj,vallogy,valj,valy)
implicit double precision (a-h,o-z)
double precision, intent(in) :: dnu,t
double precision, intent(out) :: alpha,alphader,vallogj,vallogy,valj,valy
!
! Calculate the values of the Bessel functions of the first and second kinds of
! order dnu >= 0 at point t > 0. Upon return, the output parameter valj will
! contain the value of J_dnu(t) and the output parameter valy will contain the
! value of Y_dnu(t).
!
! If dnu <= 1/2 or t^2 >= dnu^2-1/4, this routine also returns the value of the
! nonoscillatory phase function at the point t (in the output parameter alpha)
! and the value of its derivative (in the ouput parameter alphader).
!
! If t^2 < dnu^2-1/4, it will return instead the value of log(J_dnu(t)) in the
! output variable vallogj and the value of log(-Y_dnu(t)) in the output variable
! vallogy
!
!
! Input parameters:
! dnu - the order of the Bessel functions to evaluate
! t - the point on the interval (0,\infty) at which to evaluate them
!
! Output parameters:
! valj - the value of J_dnu(t)
! valy - the value of Y_dnu(t)
! alpha - the value of the phase function \alpha such that (1) and (2) hold
! alphader - the value of the derivative of the the phase function \alpha such that
! (1) and (2) hold
! vallogj - the value of \log( J_\nu(t) ) when in the nonoscillatory region
! vallogy - the value of \log(-Y_\nu(t) ) when in the nonoscillatory region
!
alpha = 0
alphader = 0
vallogj = 0
vallogy = 0
valj = 0
valy = 0
!
! Check to see if bessel_init has been called
!
if (.NOT. allocated(expdata1%ab)) then
print *,"bessel_eval: bessel_eval_init must be called before bessel_eval"
stop
endif
!
! Perform range checking
!
if (dnu .lt. 0 .OR. t .le. 0 .OR. dnu .gt. 1000000000) then
print *,"bessel_eval: parameters out of range"
print *,"dnu = ",dnu
print *,"t = ",t
stop
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Handle the case of small dnu
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if (dnu .lt. 2d0) then
!
! Use an asymptotic expansion for the phase function when t is large
!
if(t .gt. 10000) then
call bessel_phase_asymp(dnu,t,alpha,alphader)
dd = sqrt2overpi*1/sqrt(alphader*t)
valj = cos(alpha)*dd
valy = sin(alpha)*dd
return
endif
!
! Use series expansions when t is small and the precomputed table otherwise.
!
if (t .lt. 2) then
call bessel_taylor(dnu,t,alpha,alphader,vallogj,vallogy,valj,valy)
return
else
call bessel_expeval(expdata2,dnu,t,alpha,alphader,vallogj,vallogy,valj,valy)
if (dnu .gt. 0.5d0 .AND. t .lt. sqrt(dnu**2-0.25d0)) then
vallogj = log(valj)
vallogy = log(-valy)
alphader = 0
alpha = 0
endif
endif
return
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Handle dnu which are not small
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! When t is large, use the asymptotic expansion
!
if (t .gt. 1000*dnu) then
call bessel_phase_asymp(dnu,t,alpha,alphader)
dd = sqrt2overpi*1/sqrt(alphader*t)
valj = cos(alpha)*dd
valy = sin(alpha)*dd
return
endif
!
! When t is small, use Debye's expansion EXCEPT when dnu is small; in that case,
! use series expansions.
!
if (t .lt. dnu / 1000.0d0) then
if (dnu .gt. 100) then
call bessel_debye(dnu,t,vallogj,vallogy,valj,valy)
print *,"!"
else
call bessel_taylor(dnu,t,alpha,alphader,vallogj,vallogy,valj,valy)
endif
return
endif
!
! Use the precomputed table otherwise.
!
call bessel_expeval(expdata1,dnu,t,alpha,alphader,vallogj,vallogy,valj,valy)
return
end subroutine
subroutine bessel_expeval(expdata,dnu,t,aval,apval,bval1,bval2,valj,valy)
implicit double precision (a-h,o-z)
double precision, intent(in) :: dnu,t
type(bessel_expansion_data) :: expdata
double precision, intent(out) :: aval,apval,bval1,bval2,valj,valy
ifsmall = expdata%ifsmall
if (expdata%ifover .eq. 1) then
dnu0 = 1/dnu
else
dnu0 = dnu
endif
call bessel_evalabc(expdata%ifsmall,dnu,a,b,c)
if (t .ge. a) then
u = (t-a)/(b-a)
call bessel_findint(expdata%nintscd,expdata%cd,dnu0,intcd,c0,d0)
call bessel_findint(expdata%nintsab,expdata%ab,u,intab,a0,b0)
iptr1 = expdata%iptrsalpha(intab,intcd)
iptr2 = expdata%iptrsalphap(intab,intcd)
call bessel_tensor_eval(expdata%ncoefsalpha,expdata%coefsalpha,expdata%ncoefsalphap, &
expdata%coefsalphap,iptr1,iptr2,a0,b0,c0,d0,u,dnu0,aval,apval)
if (expdata%ifover .eq. 1) then
aval = aval*dnu
apval = apval * dnu
endif
aval = aval - piover2*dnu
dd = 1.0d0/sqrt(apval*t)
valj = sqrt2overpi * cos(aval) * dd
valy = sqrt2overpi * sin(aval) * dd
else
u = (t-c)/(a-c)
call bessel_findint(expdata%nintsef,expdata%ef,u,intef,e0,f0)
call bessel_findint(expdata%nintscd,expdata%cd,dnu0,intcd,c0,d0)
iptr1 = expdata%iptrsbeta1(intef,intcd)
iptr2 = expdata%iptrsbeta2(intef,intcd)
call bessel_tensor_eval(expdata%ncoefsbeta1,expdata%coefsbeta1,expdata%ncoefsbeta2,expdata%coefsbeta2, &
iptr1,iptr2,e0,f0,c0,d0,u,dnu0,bval1,bval2)
if (expdata%ifover .eq. 1) then
bval1 = (bval1+1)*dnu
bval2 = (bval2-1)*dnu
endif
bval1 = bval1 - 0.5d0*log(t)
bval2 = bval2 - 0.5d0*log(t)
valj = exp(bval1)
valy = -exp(bval2)
endif
end subroutine
subroutine bessel_evalabc(ifsmall,dnu,a,b,c)
implicit double precision (a-h,o-z)
if (ifsmall .eq. 1) then
a = 2.0d0
b = 10000.0d0
else
a = sqrt(dnu**2-0.25d0)
b = dnu * 1000.0d0
c = dnu / 1000.0d0
endif
return
end subroutine
subroutine bessel_phase_asymp(dnu,x,aval,apval)
implicit double precision (a-h,o-z)
!
! Calculate the value of \alpha_nu(z) and its first two derivatives when
! \dnu > 1 and the argument z is large (z > 100 dnu). This routine runs
! in time independent of nu and is accurate to quadruple precision.
!
! Note that it is accurate to roughly double precision when x > 20 dnu.
!
! Input parameters:
! dnu - the order of the Bessel functions
! x - the argument at which to evaluate the phase function
!
! Output parameters:
! aval - the value of \alpha_\nu(z)
! apval - the value of \alpha'_\nu(z)
!
aval = ((375733d0-0.172174d7*dnu**2+0.899808d6*dnu**4-0.9856d5*dnu**6+ &
0.128d4*dnu**8)/(0.7d1*x**7)+(32*(-1073+0.4748d4*dnu**2-0.184d4*dnu**4 &
+0.64d2*dnu**6))/(0.5d1*x**5)+(256*(25-0.104d3*dnu**2+ &
0.16d2*dnu**4))/(0.3d1*x**3)+(0.4096d4*(-1+4*dnu**2))/x+ &
0.32768d5*x)/0.32768d5
apval = (-375733d0+0.172174d7*dnu**2+0.32d2*(-28119d0*dnu**4+3080d0*dnu**6-40*dnu**8 &
+(1073d0-4748d0*dnu**2+1840d0*dnu**4-64d0*dnu**6)*x**2-8*(25d0-104d0*dnu**2+ &
16*dnu**4)*x**4+128*(1-4*dnu**2)*x**6+1024d0*x**8))/(0.32768d5*x**8)
aval = aval - piover4 - piover2*dnu
end subroutine
subroutine kummer_bessel_phase_asymp(dnu,t,aval,apval,appval)
implicit double precision (a-h,o-z)
!
! Calculate the value of \alpha_nu(z) and its first two derivatives when
! \dnu > 1 and the argument z is large (z > 100 dnu or so).
!
! It uses an asymptotic expansion obtained from Nicholson's formula.
!
!
! Input parameters:
! dnu - the order of the Bessel functions
! t - the argument at which to evaluate the phase function
!
! Output parameters:
! aval - the value of \alpha_\nu(z)
! apval - the value of \alpha'_\nu(z)
! appval - the value of \alpha''_\nu(z)
!
double precision :: ts(0:400),ss(0:400)
!
! Evaluate \alpha_\nu(z) and its derivatives using the asymptotic expansion.
!
nterms = 30
if (dnu .lt. 2) nterms = 2*nterms
nn = nterms-1
dmu = 4*dnu**2
ts(0) = 1
do n=1,nn
ts(n) = ts(n-1) * (dmu - (2*n-1)**2)/4 * (2*n-1)/(2*n)
ts(n) = ts(n)/(t**2)
end do
ss(0) = 1
do n =1,nn
sum = 0
do j=1,n-1
sum = sum + ts(j)*ss(n-j)
end do
ss(n) = -(ts(n) + sum)
end do
aval = -pi/4 + t
apval = ss(0)
appval = 0
do n=1,nn
aval = aval - ss(n)*t/(2*n-1)
apval = apval + ss(n)
appval = appval - 2*n/t*ss(n)
end do
!aval = aval - piover4 - piover2*dnu
end subroutine
subroutine bessel_debye(dnu,t,bval1,bval2,valj,valy)
implicit double precision (a-h,o-z)
!
! Evaluate log ( J_\nu(t) ) and log ( -Y_\nu(t)) when t << dnu using
! Debye's asymptotic expansion. Also, return the values of J_\nu(t) and Y_\nu(t).
!
! Input parameters:
! dnu - the order of the logarithm of the bessel functions to evaluate
! t - the point at which to evaluate them
!
! Output parameters:
! bval1 - the value of log J_\nu(t)
! bval2 - the value of log - Y_\nu(t)
! valj - the value of J_\nu(t)
! valy - the value of Y_\nu(t)
!
double precision u(0:30)
eps0 = epsilon(0.0d0)
dd = sqrt(dnu**2-t**2)
p = dnu/sqrt(dnu**2-t**2)
deta = -dd + dnu * log((dnu+dd)/t)
! Compute the coefficients in the expansion
u(0) = 1d0
u(1) = (0.3q1*p-0.5q1*p**3)/0.24d2
u(2) = (p**2*(3-0.15d2*p**2)*(1-0.1d1*p**2))/0.48d2+(p**2/0.16d2- &
(5*p**4)/0.24d2+(25*p**6)/0.144d3)/0.8d1
u(3) = 0.732421875d-1*p**3-0.8912109375d0*p**5+ &
0.184646267361111111111111111111111111d1*p**7- &
0.102581259645061728395061728395061728d1*p**9
u(4) = 0.112152099609375d0*p**4-0.23640869140625d1*p**6+ &
0.878912353515625d1*p**8- &
0.112070026162229938271604938271604938d2*p**10+ &
0.466958442342624742798353909465020576d1*p**12
nterms = 4
if (eps0 .lt. 1.0d-17) then
u(5) = 0.227108001708984375d0*p**5- &
0.736879435947963169642857142857142857d1*p**7+ &
0.425349987453884548611111111111111111d2*p**9- &
0.918182415432400173611111111111111111d2*p**11+ &
0.846362176746007346322016460905349794d2*p**13- &
0.282120725582002448774005486968449931d2*p**15
u(6) = 0.5725014209747314453125d0*p**6- &
0.264914304869515555245535714285714286d2*p**8+ &
0.218190511744211590479290674603174603d3*p**10- &
0.699579627376132541232638888888888889d3*p**12+ &
0.10599904525279998779296875d4*p**14- &
0.765252468141181642299489883401920439d3*p**16+ &
0.212570130039217122860969412056089011d3*p**18
u(7) = 0.17277275025844573974609375d1*p**7- &
0.108090919788394655500139508928571429d3*p**9+ &
0.12009029132163524627685546875d4*p**11- &
0.530564697861340310838487413194444444d4*p**13+ &
0.116553933368645332477710865162037037d5*p**15- &
0.135865500064341374385504075038580247d5*p**17+ &
0.806172218173730938450226495222717574d4*p**19- &
0.191945766231840699631006308386361327d4*p**21
u(8) = 0.60740420012734830379486083984375d1*p**8- &
0.493915304773088012422834123883928571d3*p**10+ &
0.710951430248936372143881661551339286d4*p**12- &
0.411926549688975512981414794921875d5*p**14+ &
0.122200464983017459787704326488353588d6*p**16- &
0.20340017728041553427816581987713263d6*p**18+ &
0.192547001232531532359057820219398362d6*p**20- &
0.969805983886375134885659373122090605d5*p**22+ &
0.202042913309661486434512369400435543d5*p**24
u(9) = 0.243805296995560638606548309326171875d2*p**9- &
0.249983048181120962412519888444380327d4*p**11+ &
0.45218768981362726273281233651297433d5*p**13- &
0.331645172484563577831501052493140811d6*p**15+ &
0.126836527332162478162596623102823893d7*p**17- &
0.281356322658653411070786835561890988d7*p**19+ &
0.376327129765640399640210562227630266d7*p**21- &
0.299801591853810675009134620305442025d7*p**23+ &
0.131176361466297720067607155833232776d7*p**25- &
0.242919187900551333458531770061542178d6*p**27
u(10) = 0.110017140269246738171204924583435059d3*p**10- &
0.138860897537170405319722538644617254d5*p**12+ &
0.308186404612662398480390784277102058d6*p**14- &
0.278561812808645468895944456259409587d7*p**16+ &
0.132887671664218183294374116316989616d8*p**18- &
0.375671766607633513081631979640619254d8*p**20+ &
0.663445122747290266647987984543283835d8*p**22- &
0.74105148211532657748335620964414698d8*p**24+ &
0.50952602492664642206381821980499182d8*p**26- &
0.197068191184322269268233898462426092d8*p**28+ &
0.328446985307203782113723164104043486d7*p**30
nterms = 10
endif
! u(11) = 0.551335896122020585607970133423805237d3*p**11- &
! 0.840054336030240852886782812566815556d5*p**13+ &
! 0.224376817792244942923073778023981318d7*p**15- &
! 0.244740627257387284678130081560158608d8*p**17+ &
! 0.142062907797533095185653278517916247d9*p**19- &
! 0.495889784275030309254636245374258461d9*p**21+ &
! 0.110684281682301446825966666909624581d10*p**23- &
! 0.162108055210833707524817588263676888d10*p**25+ &
! 0.155359689957058005615812104438799617d10*p**27- &
! 0.939462359681578402546244300920389077d9*p**29+ &
! 0.325573074185765749020228086418133106d9*p**31- &
! 0.49329253664509961972761831275474713d8*p**33
! u(12) = 0.303809051092238426861058542272076011d4*p**12- &
! 0.549842327572288687134901932937294974d6*p**14+ &
! 0.173951075539781645381043963142367416d8*p**16- &
! 0.225105661889415277804071426963052964d9*p**18+ &
! 0.155927986487925751334964620474195163d10*p**20- &
! 0.656329379261928433203501685097471273d10*p**22+ &
! 0.179542137311556000801522058538280382d11*p**24- &
! 0.330265997498007231400909926757785435d11*p**26+ &
! 0.412801855797539739551314710270974336d11*p**28- &
! 0.346320433881587779229024133355955081d11*p**30+ &
! 0.186882075092958249223659193027916269d11*p**32- &
! 0.586648149205184722761070078443583025d10*p**34+ &
! 0.814789096118312114945930664504976423d9*p**36
! u(13) = 0.18257755474293174691169383550004568d5*p**13- &
! 0.387183344257261262062662666693114687d7*p**15+ &
! 0.143157876718888981291057270117829433d9*p**17- &
! 0.216716498322379509351841612771120111d10*p**19+ &
! 0.176347306068349693831519739575843574d11*p**21- &
! 0.878670721780232656766359041900689893d11*p**23+ &
! 0.287900649906150588722913292057201807d12*p**25- &
! 0.645364869245376503280883689947469186d12*p**27+ &
! 0.10081581068653820947691251648300282d13*p**29- &
! 0.109837515608122330682706453541519622d13*p**31+ &
! 0.819218669548577328641303325492162173d12*p**33- &
! 0.399096175224466497955234623241855124d12*p**35+ &
! 0.114498237732025809952776906629561812d12*p**37- &
! 0.14679261247695616660612423926866899d11*p**39
! u(14) = 0.11883842625678325312377214828529759d6*p**14- &
! 0.291883881222208134034273203199389529d8*p**16+ &
! 0.124700929351271032482586837380528715d10*p**18- &
! 0.218229277575292237293987756497473379d11*p**20+ &
! 0.205914503232410015689081725532642961d12*p**22- &
! 0.119655288019618159897416068606323116d13*p**24+ &
! 0.461272578084913196680381603357873686d13*p**26- &
! 0.123204913055982871597877006531765418d14*p**28+ &
! 0.233483640445818409376574678027202736d14*p**30- &
! 0.316670885847851584025525678856880023d14*p**32+ &
! 0.305651255199353206117200368828009531d14*p**34- &
! 0.205168994109344373907604779691958581d14*p**36+ &
! 0.91093411852398989559078765412965912d13*p**38- &
! 0.240629790002850396109089159221165641d13*p**40+ &
! 0.286464035717679042987010903834721001d12*p**42
! u(15) = 0.832859304016289298975769805899460607d6*p**15- &
! 0.234557963522251524776263248340606981d9*p**17+ &
! 0.114657548994482371569223589595400235d11*p**19- &
! 0.229619372968246468165953477323142236d12*p**21+ &
! 0.248500092803408532364745236563796649d13*p**23- &
! 0.166348247248924805186569250601864788d14*p**25+ &
! 0.743731229086791449411472895371707555d14*p**27- &
! 0.232604831188939925232174860601775639d15*p**29+ &
! 0.523054882578444655579053519617003926d15*p**31- &
! 0.857461032982895051396198708919763995d15*p**33+ &
! 0.102695519608276248881374058059402153d16*p**35- &
! 0.889496939881026441812825719177409218d15*p**37+ &
! 0.542739664987659722702059123968581435d15*p**39- &
! 0.221349638702525195965593797940754625d15*p**41+ &
! 0.541775107551060490049184371877416094d14*p**43- &
! 0.601972341723400544499093746530462326d13*p**45
! u(16) = 0.625295149343479700246652174585454409d7*p**16- &
! 0.200164692819177633152993881567114213d10*p**18+ &
! 0.110997405139179012793740670696533152d12*p**20- &
! 0.252155847491285462131253849741840121d13*p**22+ &
! 0.31007436472896461417190699236272596d14*p**24- &
! 0.236652530451649251681776949047977101d15*p**26+ &
! 0.121267580425034741652590725733823486d16*p**28- &
! 0.437932583836401543778009851792875042d16*p**30+ &
! 0.1148670697844975210969241162584644d17*p**32- &
! 0.222682251339111425621938268773683608d17*p**34+ &
! 0.3213827526858624120000619279550618d17*p**36- &
! 0.344472260064851446977970830988029325d17*p**38+ &
! 0.270547113061970812410141980587939573d17*p**40- &
! 0.15129826322457681180846361160344783d17*p**42+ &
! 0.570578215902367080961869450569376531d16*p**44- &
! 0.13010127235496994267986663596889617d16*p**46+ &
! 0.135522158703093690291527745800933511d15*p**48
! u(17) = 0.50069589531988925997691486626732342d8*p**17- &
! 0.180782203846580637171348543533255393d11*p**19+ &
! 0.11287091454108740785786249084776509d13*p**21- &
! 0.288638376314147602541431630147139463d14*p**23+ &
! 0.400044457043036241513345081265490388d15*p**25- &
! 0.345038551184627249201183192496466485d16*p**27+ &
! 0.200642714763095308001005208714045857d17*p**29- &
! 0.827094565158506427872593795120077537d17*p**31+ &
! 0.249603651261604257099426249025714789d18*p**33- &
! 0.562631788074636028394911699660971604d18*p**35+ &
! 0.957533509816913866353389551988367794d18*p**37- &
! 0.123361169319606950223869780575750905d19*p**39+ &
! 0.119619911427563078506845902667982026d19*p**41- &
! 0.859257798031754799058132886681068178d18*p**43+ &
! 0.443479546141719040600256670437801662d18*p**45- &
! 0.155529835043139025621264893001534908d18*p**47+ &
! 0.331927647203552220946524331402936401d17*p**49- &
! 0.325419261964266883280906207257780785d16*p**51
! u(18) = 0.425939216504766905188694938317688326d9*p**18- &
! 0.172283238717350498735931014691585218d12*p**20+ &
! 0.120301158264191917280995034461687696d14*p**22- &
! 0.343965304743075947469841916872585625d15*p**24+ &
! 0.533510697870883867550669095248947033d16*p**26- &
! 0.516050931934852274365210916337848737d17*p**28+ &
! 0.337667624979060962298867948957790417d18*p**30- &
! 0.157364347651895987190080513032097508d19*p**32+ &
! 0.540289487671598188722186129704639124d19*p**34- &
! 0.139708035164433738547247241132162608d20*p**36+ &
! 0.275728298165051886494760560218067192d20*p**38- &
! 0.417886144465683888175485815664490412d20*p**40+ &
! 0.485994272932483577515349873427061566d20*p**42- &
! 0.430155570383144374234384955992726907d20*p**44+ &
! 0.284652122516765709765053357384495987d20*p**46- &
! 0.136394204105715906568258712897751248d20*p**48+ &
! 0.447020096401231016929421203971863443d19*p**50- &
! 0.896611421527046330159716827547000509d18*p**52+ &
! 0.830195760673191046444182247728704175d17*p**54
! u(19) = 0.38362551802304335079166011220849692d10*p**19- &
! 0.172770401235299952244209098760703979d13*p**21+ &
! 0.134124169151806385432441778264118115d15*p**23- &
! 0.426193551042689833817774923754940111d16*p**25+ &
! 0.735166361093097040512846034428751251d17*p**27- &
! 0.792165111932383213706735948644990278d18*p**29+ &
! 0.578988766766465313109222368420406512d19*p**31- &
! 0.302556659899037203571814889894839345d20*p**33+ &
! 0.117074905357972588537637116588312292d21*p**35- &
! 0.343462139976841689316772196461324752d21*p**37+ &
! 0.775670495346113679295356443569489231d21*p**39- &
! 0.13602037772849940873131658691020752d22*p**41+ &
! 0.185710893214634517954552984777922567d22*p**43- &
! 0.196772470770531245894838473024836405d22*p**45+ &
! 0.160168985736935973651488052360912404d22*p**47- &
! 0.982443842768985824666146062913387701d21*p**49+ &
! 0.439279220088871200249738524615433057d21*p**51- &
! 0.135121750343599611168339614870098582d21*p**53+ &
! 0.255638029605292352976324818631861233d20*p**55- &
! 0.224243885618677502610811244413913362d19*p**57
! u(20) = 0.364684008070655585346321894168202385d11*p**20- &
! 0.181872620385110372385693316827679152d14*p**22+ &
! 0.156131239304846727841207996912182678d16*p**24- &
! 0.548403360388328965552013880257936702d17*p**26+ &
! 0.104617211311343439550769871440188984d19*p**28- &
! 0.124837009950472331523315265641889206d20*p**30+ &
! 0.101267741695365924541613177045778763d21*p**32- &
! 0.589179413506949638050470515605951253d21*p**34+ &
! 0.254896111466497158526854530501617133d22*p**36- &
! 0.840591581710835044858474095699906146d22*p**38+ &
! 0.214874148150558827552631088385954108d23*p**40- &
! 0.430253430348237847102382496212182648d23*p**42+ &
! 0.678366164295188322967854720415541027d23*p**44- &
! 0.8423222750084322624731938520667074d23*p**46+ &
! 0.819433100543512964313947466629412804d23*p**48- &
! 0.617320630288441459736883722178948112d23*p**50+ &
! 0.352843584390340937922359793537811146d23*p**52- &
! 0.147877435284336144588395567834130703d23*p**54+ &
! 0.428529608282949395077790047957249349d22*p**56- &
! 0.767194393672900405807237969951101091d21*p**58+ &
! 0.639328661394083671506031641625917576d20*p**60
! u(21) = 0.364901081884983356528075657200445362d12*p**21- &
! 0.200524401236271121541300505690647074d15*p**23+ &
! 0.189440698425214338628922469111100468d17*p**25- &
! 0.731950149156613314562948475204925017d18*p**27+ &
! 0.153650252184433729805938642944726843d20*p**29- &
! 0.201973354193008733681475317642428808d21*p**31+ &
! 0.180815940571319435847465975699024373d22*p**33- &
! 0.116402464614653692797408043708937559d23*p**35+ &
! 0.559159138036626314349874929646565996d23*p**37- &
! 0.205661491362715432982222507351100431d24*p**39+ &
! 0.589654346197824477149708190362279379d24*p**41- &
! 0.13337178907798302247135402844971842d25*p**43+ &
! 0.239672377443516833876608356229351728d25*p**45- &
! 0.34308728985157458476956348796288259d25*p**47+ &
! 0.390526410353698492882668710535967156d25*p**49- &
! 0.351109652833264407896070935796956052d25*p**51+ &
! 0.246150608540387512290180863147691335d25*p**53- &
! 0.131709696180923858372184899510853533d25*p**55+ &
! 0.519428909476681222690811035361754291d24*p**57- &
! 0.142283948233214138089681997481119829d24*p**59+ &
! 0.241746150089637888288218214489800083d23*p**61- &
! 0.191862023880664990704935090864920701d22*p**63
! u(22) = 0.383353466139394446716143119411149702d13*p**22- &
! 0.231091597613235655650143780194709107d16*p**24+ &
! 0.239202801202699958440948228499700542d18*p**26- &
! 0.101218183799420888327604102235739369d20*p**28+ &
! 0.232753462580894131463350039212914149d21*p**30- &
! 0.335446891222267844277594894259904261d22*p**32+ &
! 0.329755775746147769855229961944775591d23*p**34- &
! 0.23361075244869650035568524756138199d24*p**36+ &
! 0.123852410379245195143560668158290337d25*p**38- &
! 0.504635986525440033904484863810565044d25*p**40+ &
! 0.161031285411373152296094425717467505d26*p**42- &
! 0.407750134920654134100989467499011552d26*p**44+ &
! 0.826258535798955024521169467709696302d26*p**46- &
! 0.134591939945564157718973690585097944d27*p**48+ &
! 0.176357132723266447462519515906348121d27*p**50- &
! 0.185267310415499173925336283634739516d27*p**52+ &
! 0.15480920835773851082483515012954099d27*p**54- &
! 0.101480489827663958537369827198177598d27*p**56+ &
! 0.510392026838880165760676257871113233d26*p**58- &
! 0.190068075356644332125244495526161362d26*p**60+ &
! 0.493618528379066229921354986659832557d25*p**62- &
! 0.798002122825655862589501276679921426d24*p**64+ &
! 0.604547062746708986810228239909031383d23*p**66
! u(23) = 0.421897157028409649239233596091075079d14*p**23- &
! 0.277848110131108086985502155912899076d17*p**25+ &
! 0.313852832114999959832341577697831212d19*p**27- &
! 0.144863877495108634448658092304695329d21*p**29+ &
! 0.363414998697808752438158646072024245d22*p**31- &
! 0.571799190654320517120476029846975743d23*p**33+ &
! 0.614433992514498807299732556748087018d24*p**35- &
! 0.476692460825148068267407437866955436d25*p**37+ &
! 0.277446649067293931043622397168191097d26*p**39- &
! 0.124493420461242815382857106059889454d27*p**41+ &
! 0.439213056343004793221662806552987429d27*p**43- &
! 0.123555291467876091481496997294786449d28*p**45+ &
! 0.279820689969771709442486291189108562d28*p**47- &
! 0.513199843901033287652645518249006018d28*p**49+ &
! 0.764121653567826736210281085397760232d28*p**51- &
! 0.922839502325735629213880187089581365d28*p**53+ &
! 0.899925584591745293792122769292879603d28*p**55- &
! 0.702322235515725071138853041148922393d28*p**57+ &
! 0.43227737321001869803651614720060867d28*p**59- &
! 0.205090299492923282240155705772128658d28*p**61+ &
! 0.723424323484431846755246063787535509d27*p**63- &
! 0.178606809667434939969558427584862639d27*p**65+ &
! 0.275386300757694611216729218984561521d26*p**67- &
! 0.199555290404126529867195086220696754d25*p**69
! u(24) = 0.485401468685290059984097403002700443d15*p**24- &
! 0.347929914392504438547364206951577309d18*p**26+ &
! 0.427320739570112705505703842861292962d20*p**28- &
! 0.214356534151085377171807626462057942d22*p**30+ &
! 0.584468762928333913223288234050593547d23*p**32- &
! 0.100007501389617274844042781709193954d25*p**34+ &
! 0.116991896918744748527505634234906702d26*p**36- &
! 0.989664866169548848319498165944072587d26*p**38+ &
! 0.629370256208713016903651964894641166d27*p**40- &
! 0.309391946830632852904108871866000402d28*p**42+ &
! 0.119982119676444251414044799592557489d29*p**44- &
! 0.372523463410934458791268227865795309d29*p**46+ &
! 0.935811776488796481399994874894566049d29*p**48- &
! 0.19153963148099325448975405732480185d30*p**50+ &
! 0.320665034398074766313675441936777708d30*p**52- &
! 0.439513291807832538857481993151790106d30*p**54+ &
! 0.492155086983876246272008920145547488d30*p**56- &
! 0.447753483879506309074736608172804025d30*p**58+ &
! 0.327765826563745257946464771429808798d30*p**60- &
! 0.190122077675473387503463760467779104d30*p**62+ &
! 0.853618488227928655762697003154167538d29*p**64- &
! 0.285997763835479993168269335966232122d29*p**66+ &
! 0.67289576509181715851178856497015793d28*p**68- &
! 0.991640126840705758542559182202197346d27*p**70+ &
! 0.68863897697271233232122165430708149d26*p**72
! u(25) = 0.582724463156690717010908932304741881d16*p**25- &
! 0.453053572751259567669131832538230868d19*p**27+ &
! 0.602963812748747301412305025063943097d21*p**29- &
! 0.327612341004452220655939314790969661d23*p**31+ &
! 0.9675654883193621725064448911954408d24*p**33- &
! 0.179410406476179864835911486076657691d26*p**35+ &
! 0.227643107138493576433115497967817166d27*p**37- &
! 0.209145334746779466447417108843487722d28*p**39+ &
! 0.144711958171198589042735717919910328d29*p**41- &
! 0.775778557340413161154171795657503879d29*p**43+ &
! 0.329009271592913519075724227538688103d30*p**45- &
! 0.112102325521359074548928928431884627d31*p**47+ &
! 0.310346611439110353220627103608681414d31*p**49- &
! 0.703605533863648554381753950417772067d31*p**51+ &
! 0.131287966889026126473398903898172119d32*p**53- &
! 0.202087925878518729423312704400064525d32*p**55+ &
! 0.25653099826522344670515104410063804d32*p**57- &
! 0.267713556055940460103523291578851645d32*p**59+ &
! 0.228230851188564859409123706565701172d32*p**61- &
! 0.157303880763014260043291685023510051d32*p**63+ &
! 0.862735582457135471066934080863805434d31*p**65- &
! 0.367622142668141372128248297892215158d31*p**67+ &
! 0.117284842687447691672641513192630524d31*p**69- &
! 0.263552944198074633266385239782829741d30*p**71+ &
! 0.37195112743738624849499984603261239d29*p**73- &
! 0.247967418291590832329999897355074927d28*p**75
! u(26) = 0.72868573493776565141604525621376617d17*p**26- &
! 0.612554285576658352526937229010385347d20*p**28+ &
! 0.88067442525590322049462380008893813d22*p**30- &
! 0.516681854049430391006608796166791152d24*p**32+ &
! 0.164767891404543973335305261079029487d26*p**34- &
! 0.330012135182560679577764369717568937d27*p**36+ &
! 0.452640960231115837322828138948944663d28*p**38- &
! 0.450048304729440029417172221511918296d29*p**40+ &
! 0.337517046379419754781243380660397961d30*p**42- &
! 0.196500936092721938302656844898617027d31*p**44+ &
! 0.907258060300902704117345146432044022d31*p**46- &
! 0.337539584146442548188814368178373599d32*p**48+ &
! 0.102400737756077566701201070359264036d33*p**50- &
! 0.25550854580778980252948947681441991d33*p**52+ &
! 0.527444349949904443004184046177222035d33*p**54- &
! 0.9038465440826322699440166545785235d33*p**56+ &
! 0.128712819523639475512159681678831072d34*p**58- &
! 0.152119132886828244243458028553444786d34*p**60+ &
! 0.148617497331100771623707721279680334d34*p**62- &
! 0.119186492563344309942737754062636946d34*p**64+ &
! 0.776061590399423944363297223467142657d33*p**66- &
! 0.403628535402230097662795118550772433d33*p**68+ &
! 0.163651606298783030335601535470396996d33*p**70- &
! 0.498300387793236212663806690028094697d32*p**72+ &
! 0.107160399176810385308539346161600272d32*p**74- &
! 0.145091935627867085767091189939888216d31*p**76+ &
! 0.93007651043504542158391788423005267d29*p**78
! u(27) = 0.947628809926010979086884779955772765d18*p**27- &
! 0.858788893725780162669373676626622318d21*p**29+ &
! 0.13299548584220630219265551482192056d24*p**31- &
! 0.840113475121303016930126514196295082d25*p**33+ &
! 0.288440397189696717887869554466192847d27*p**35- &
! 0.622171707867680628661790400753524331d28*p**37+ &
! 0.919617972562949729960804291040557182d29*p**39- &
! 0.986304601898171640470827699878705099d30*p**41+ &
! 0.798958987760909066438432122029747388d31*p**43- &
! 0.503282100104578199385376523864315702d32*p**45+ &
! 0.251949819456967206681968321189271327d33*p**47- &
! 0.101896618454880670032979883846598574d34*p**49+ &
! 0.337077807950494368230277832166471826d34*p**51- &
! 0.920505080526906879187230856848814766d34*p**53+ &
! 0.208883218830112931301879948063013883d35*p**55- &
! 0.395564661836054922793808849979780929d35*p**57+ &
! 0.626467225082785784826046250321988234d35*p**59- &
! 0.829787625121355815326662624913564876d35*p**61+ &
! 0.917252039823755307698955521203543175d35*p**63- &
! 0.842276839848194731574881917498305154d35*p**65+ &
! 0.637622761225156593446229124075315434d35*p**67- &
! 0.393411634413629717269504353059316198d35*p**69+ &
! 0.194550176112517327863632173093877355d35*p**71- &
! 0.752317406868818183619353931245947892d34*p**73+ &
! 0.219080798339953928980607092703177893d34*p**75- &
! 0.451717748724840976453077149509137293d33*p**77+ &
! 0.587738598856666078034417308992076033d32*p**79- &
! 0.36280160423250992471260327715560249d31*p**81
! u(28) = 0.127972194197597464809724395507420206d20*p**28- &
! 0.124688299772818777161634446227009532d23*p**30+ &
! 0.207441875635037319635660859486024944d25*p**32- &
! 0.14071348472035016629245800790564343d27*p**34+ &
! 0.518747305640549145620873799425137464d28*p**36- &
! 0.120174683166421613108482287565520462d30*p**38+ &
! 0.190874140739905313661484074775955642d31*p**40- &
! 0.220168032948989005033893791610109904d32*p**42+ &
! 0.192032134414573592768649926526294629d33*p**44- &
! 0.130440622325443580897000263726395362d34*p**46+ &
! 0.705451691703004399394120339482779856d34*p**48- &
! 0.308911890668890776219406761914755577d35*p**50+ &
! 0.110939862570461849636570033582640992d36*p**52- &
! 0.329949008990161002131493010841869589d36*p**54+ &
! 0.81851205878295284084400377874190432d36*p**56- &
! 0.17020984786957366211242714607773653d37*p**58+ &
! 0.297598016075494606611560730474645362d37*p**60- &
! 0.437972938588663864164837052787908564d37*p**62+ &
! 0.542118567233165010724497079399741109d37*p**64- &
! 0.562777178696641796264092265008556109d37*p**66+ &
! 0.487432734118452256313590303257907177d37*p**68- &
! 0.349394594694567915060403269977363257d37*p**70+ &
! 0.204829854315357373743912366898554273d37*p**72- &
! 0.965426002797982426014269226458744034d36*p**74+ &
! 0.356816624395007347968513512049201718d36*p**76- &
! 0.9956471116118673323268632782714072d35*p**78+ &
! 0.197163216704581927758826511695555563d35*p**80- &
! 0.246895561720328816515044345186316384d34*p**82+ &
! 0.146961643881148105068478776896616895d33*p**84
! u(29) = 0.179216232305169897916721793536038038d21*p**29- &
! 0.187262146279791821049832736344307165d24*p**31+ &
! 0.33385826350152459847542649133384709d26*p**33- &
! 0.242585953169935201965732844709541638d28*p**35+ &
! 0.957865464193286072897009316121158832d29*p**37- &
! 0.237716180302490067819083589500531345d31*p**39+ &
! 0.404657983928480464338035797975506122d32*p**41- &
! 0.500619443010427433088899543565781836d33*p**43+ &
! 0.46878990378437433628572686704661886d34*p**45- &
! 0.342320728762687259019352879030693498d35*p**47+ &
! 0.19934438319467844227477340952217572d36*p**49- &
! 0.941750298792840249583477469334240457d36*p**51+ &
! 0.36573420870134447179808148378755076d37*p**53- &
! 0.117950702339341789441245738549217699d38*p**55+ &
! 0.31832373733182758526295358915119921d38*p**57- &
! 0.722914703475325383800184872570509971d38*p**59+ &
! 0.138663798558419485039456798399627025d39*p**61- &
! 0.225089229337097793701893551552382588d39*p**63+ &
! 0.309302090616717379867776026432617642d39*p**65- &
! 0.359255480820602776550666501249957224d39*p**67+ &
! 0.351503405067042401602858723959575374d39*p**69- &
! 0.288064296867761390044463051029101265d39*p**71+ &
! 0.196060276977925167917392163848104373d39*p**73- &
! 0.109478187854918280728858429941738711d39*p**75+ &
! 0.492882093283252148935750460375645305d38*p**77- &
! 0.174450359177287393876647917207991552d38*p**79+ &
! 0.467247527475503683775658411952574931d37*p**81- &
! 0.890032231707953932812565438699123475d36*p**83+ &
! 0.107417939553828178697177850003159704d36*p**85- &
! 0.617344480194414820098723275880228185d34*p**87
! u(30) = 0.259938210272623506103378568041228505d22*p**30- &
! 0.290589689578114083694274447444190856d25*p**32+ &
! 0.553894882372358064456876088014239997d27*p**34- &
! 0.430124106779309332728727537629705037d29*p**36+ &
! 0.181485863689152126812250991545702281d31*p**38- &
! 0.481356315631653972836890151266560871d32*p**40+ &
! 0.876059330567751385801696941038321451d33*p**42- &
! 0.115948639043769346146260690197940787d35*p**44+ &
! 0.116260587126895632542352879202556529d36*p**46- &
! 0.910081627318969824575174637972346569d36*p**48+ &
! 0.568931736273087694960688892363802867d37*p**50- &
! 0.289032297964648516435263868487129395d38*p**52+ &
! 0.120953563882437085571346884880484608d39*p**54- &
! 0.421351143570896655549145116732005648d39*p**56+ &
! 0.123178278913256848218104807523822704d40*p**58- &
! 0.304030322110419651339957038500107352d40*p**60+ &
! 0.63628525400547624061094203648576869d40*p**62- &
! 0.113213503462092208797249916812284229d41*p**64+ &
! 0.171453459953689071017600519067938267d41*p**66- &
! 0.220908797987355376205836691410685908d41*p**68+ &
! 0.241657614051766738273965898242471484d41*p**70- &
! 0.223567013700806501418042496295808533d41*p**72+ &
! 0.173852468068804005636006504464128802d41*p**74- &
! 0.112634245548667708407254192796676926d41*p**76+ &
! 0.600398432028425584659787184910077306d40*p**78- &
! 0.258708729989480497111204782670203327d40*p**80+ &
! 0.878454255266375476299486418444559968d39*p**82- &
! 0.226207676137217239572591687258170054d39*p**84+ &
! 0.41508224435141759059029954571036718d38*p**86- &
! 0.483457896052251105989812665423703698d37*p**88+ &
! 0.26858772002902839221656259190205761d36*p**90
!
! Sum the series
!
dsum1 = 0
dsum2 = 0
xx = 1