AI Agent to analyze blood reports and provide detailed health insights.
Features | Tech Stack | Installation | Contributing | Author
- Intelligent agent-based architecture with multi-model cascade system
- In-context learning from previous analyses and knowledge base building
- Medical report analysis with personalized health insights
- PDF upload, validation and text extraction (up to 20MB)
- Secure user authentication and session management
- Session history with report analysis tracking
- Modern, responsive UI with real-time feedback
- Frontend Framework: Streamlit
- AI Integration: Multi-model architecture via Groq
- Primary: LLaMA-3.3-70B-Versatile
- Secondary: LLaMA-3-8B-8192
- Tertiary: Mixtral-8x7B-32768
- Fallback: Gemma-7B-IT
- Database: Supabase
- PDF Processing: PDFPlumber
- Authentication: Supabase Auth
- Python 3.8+
- Streamlit 1.30.0+
- Supabase account
- Groq API key
- PDFPlumber
- Python-magic-bin (Windows) or Python-magic (Linux/Mac)
- Clone the repository:
git clone https://github.com/harshhh28/hia.git
cd hia
- Install dependencies:
pip install -r requirements.txt
- Required environment variables (in
.streamlit/secrets.toml
):
SUPABASE_URL = "your-supabase-url"
SUPABASE_KEY = "your-supabase-key"
GROQ_API_KEY = "your-groq-api-key"
- Run the application:
streamlit run src\main.py
hia/
├── requirements.txt
├── README.md
├── src/
│ ├── main.py # Application entry point
│ ├── auth/ # Authentication related modules
│ │ ├── auth_service.py # Supabase auth integration
│ │ └── session_manager.py # Session management
│ ├── components/ # UI Components
│ │ ├── analysis_form.py # Report analysis form
│ │ ├── auth_pages.py # Login/Signup pages
│ │ ├── footer.py # Footer component
│ │ └── sidebar.py # Sidebar navigation
│ ├── config/ # Configuration files
│ │ ├── app_config.py # App settings
│ │ └── prompts.py # AI prompts
│ ├── services/ # Service integrations
│ │ └── ai_service.py # AI service integration
│ ├── agents/ # Agent-based architecture components
│ │ ├── agent_manager.py # Agent management
│ │ └── model_fallback.py # Model fallback logic
│ └── utils/ # Utility functions
│ ├── validators.py # Input validation
│ └── pdf_extractor.py # PDF processing
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.
Created by Harsh Gajjar