VideoCutterAI is an AI-powered web tool that automatically finds and generates highlight clips from your videos. Upload a video, and let the app transcribe, analyze, and create beautiful highlight reels with AI-generated visuals and subtitles.
- 🎥 Automatic Video Transcription using OpenAI Whisper
- 🧠 Highlight Detection with Google Gemini AI
- ✂️ Clip Generation with smooth transitions
- 🖼️ AI-generated Visuals for each highlight
- 📝 Burned-in Subtitles for accessibility
- 💾 Downloadable Highlight Clips
- 🦾 Modern Flask Web App
The interface is clean, modern, and inspired by royal blue and gold themes for a premium feel.
- Clone the repo:
git clone https://github.com/yourusername/videocutterAI.git cd videocutterAI
- Install dependencies:
pip install -r requirements.txt
- Set up environment variables:
- Copy
.env.example
to.env
and add your API keys:GOOGLE_API_KEY
(for Gemini)FLASK_SECRET_KEY
(any random string)
- Copy
- Run the app:
python app.py
- Open in browser:
- Go to http://localhost:5000
Create a .env
file in the root directory:
GOOGLE_API_KEY=your_google_gemini_api_key
FLASK_SECRET_KEY=your_flask_secret_key
├── app.py # Flask app
├── video_processor.py # AI video processing logic
├── requirements.txt # Python dependencies
├── templates/ # HTML templates
├── static/ # CSS/JS/Images
├── uploads/ # Uploaded videos
├── clips/ # Generated highlight clips
├── transcripts/ # Video transcripts
├── .env.example # Example environment file
├── .gitignore # Git ignore rules
- Unsplash for royalty-free images
- OpenAI Whisper
- Google Gemini
- ffmpeg-python
MIT License. See LICENSE for details.