Skip to content

Commit

Permalink
docs: Update score
Browse files Browse the repository at this point in the history
- Update score
  • Loading branch information
hankyul2 committed Dec 23, 2021
1 parent d3fdee2 commit 2c36d7e
Showing 1 changed file with 25 additions and 33 deletions.
58 changes: 25 additions & 33 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -72,53 +72,45 @@ If you want to finetuning on cifar, use this repository.

## Experiment Results

| Model Name | Pretrained Dataset | Cifar10 | Cifar100 |
| ----------------------- | ------------------ | ------- | --------- |
| EfficientNetV2-S | ImageNet | 97.98 | 88.53 |
| EfficientNetV2-M | ImageNet | 98.38 | 85.81 (🤔) |
| EfficientNetV2-L | ImageNet | 98.4 | - |
| EfficientNetV2-S-in21k | ImageNet21k | 98.1 | 89.2 |
| EfficientNetV2-M-in21k | ImageNet21k | 98.2 | 89.5 |
| EfficientNetV2-L-in21k | ImageNet21k | 98.2 | 90.1 |
| EfficientNetV2-XL-in21k | ImageNet21k | - | - |
| Model Name | Pretrained Dataset | Cifar10 | Cifar100 |
| ----------------------- | ------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| EfficientNetV2-S | ImageNet | 98.46 ([tf.dev](https://tensorboard.dev/experiment/HQqb9kYXQ1yLCdfLGQT7yQ/),) | 90.05 ([tf.dev](https://tensorboard.dev/experiment/euwy6Rv6RR2RUlLw6Dqi2g/),) |
| EfficientNetV2-M | ImageNet | 98.89 ([tf.dev](https://tensorboard.dev/experiment/GyJwToamQ5q5nHZARL5n2Q/),) | 91.54 ([tf.dev](https://tensorboard.dev/experiment/mVj4XfD4QwyGdGv5EV3H0A/),) |
| EfficientNetV2-L | ImageNet | 98.80 ([tf.dev](https://tensorboard.dev/experiment/BGRZvE0OS6WU3CqybE25vg/),) | 91.88 ([tf.dev](https://tensorboard.dev/experiment/QYjNoNKyTwmHBvBeL5NRqQ/),) |
| EfficientNetV2-S-in21k | ImageNet21k | 98.50 ([tf.dev](https://tensorboard.dev/experiment/f44EqAzLR2S2831tqfrZEw/),) | 90.96 ([tf.dev](https://tensorboard.dev/experiment/PnByKdA4RKeiaJ8YH2nr5Q/),) |
| EfficientNetV2-M-in21k | ImageNet21k | 98.70 ([tf.dev](https://tensorboard.dev/experiment/b0pd5LxeRTOmXMOibaFz7Q/),) | 92.06 ([tf.dev](https://tensorboard.dev/experiment/NZhXuDFmRH6k9as5D7foBg/),) |
| EfficientNetV2-L-in21k | ImageNet21k | 98.78 ([tf.dev](https://tensorboard.dev/experiment/GngI0UD5QbanKHKnLdVCWA/),) | 92.08 ([tf.dev](https://tensorboard.dev/experiment/99VVMfMORYC3UmOePzRakg/),) |
| EfficientNetV2-XL-in21k | ImageNet21k | - | - |

*Note*

1. Training Results are not good enough to match with paper results
2. All models are trained using same setup in experiment setup section (which is adapted from paper)
2. All model weights and code will be updated soon! (winter vacation begin!!)





## Experiment Setup

*ImageNet Setup*
1. *Cifar setup*

| Setup | Contents |
| ------------- | ------------------------------------------------------------ |
| Data | ImageNet(ImgeSize=128, RandAugmentation=5, Mixup=0) |
| Model | EfficientNetV2(Dropout=0.1, Stochastic_depth=0.2) |
| Optimizer | RMSProp(decay=0.9, batch_norm_momentum=0.99, weight_decay=1e-5, momentum=0.9) |
| Learning rate | (epoch=350, batch_size=4096, lr=0.256, warmup=?) learning rate decay by 0.97 every 2.4 epochs |
| EMA | decay_rate=0.9999 |
| Category | Contents |
| ------------------ | ------------------------------------------------------------ |
| Dataset | CIFAR10 \| CIFAR100 |
| Batch_size per gpu | (s, m, l) = (256, 128, 64) |
| Train Augmentation | image_size = 224, horizontal flip, random_crop (pad=4), CutMix(prob=1.0) |
| Test Augmentation | image_size = 224, center_crop |
| Model | EfficientNetV2 s \| m \| l (pretrained on in1k or in21k) |
| Regularization | Dropout=0.0, Stochastic_path=0.2, BatchNorm |
| Optimizer | AdamW(weight_decay=0.005) |
| Criterion | Label Smoothing (CrossEntropyLoss) |
| LR Scheduler | LR: (s, m, l) = (0.001, 0.0005, 0.0003), LR scheduler: OneCycle Learning Rate(epoch=20) |
| GPUs & ETC | 16 precision<br />EMA(decay=0.999, 0.9993, 0.9995)<br />S - 2 * 3090 (batch size 512)<br />M - 2 * 3090 (batch size 256)<br />L - 2 * 3090 (batch size 128) |

*Cifar Setup*
*Notes*

| Setup | Contents |
| ------------- | ------------------------------------------------------------ |
| Data | Cifar(ImgeSize=224, Cutmix) |
| Model | EfficientNetV2(Dropout=0.0, Stochastic_depth=0.2) |
| Optimizer | SGD(weight_decay=1e-5, momentum=True) |
| Learning rate | CosineLearningRate(epoch=100, batch_size=32, lr=0.001, warmup=1) |

*Note*

1. For progressive learning, `ImageSize`, `RandAugmentation`, `Mixup`, `Dropout` are going to be changed along with epoch.
2. Evaluation Size is different for each model
3. `epoch=100` in *Cifar Stepup* is calculated from paper like this: `10,000 step * 512 batch size / 50,000 images = 102.4`
4. To see more model specific details, check [efficientnet_v2_config.py](efficientnetv2/efficientnetv2_config.py)
5. To see more train hyperparameter, check [cifar.yaml](config/base.yaml)
1. LR, EMA decay, rand_augmentation are affected by batch_size and epoch. So if you change batch size, you also change mentioned parameters.



Expand Down

0 comments on commit 2c36d7e

Please sign in to comment.