Skip to content

Commit

Permalink
update the image in the samples to use the new component images (kube…
Browse files Browse the repository at this point in the history
…flow#1267)

* update the image in the samples to use the new component images

* replace the image tag in the yaml
  • Loading branch information
gaoning777 authored and hamedhsn committed May 5, 2019
1 parent 32946a4 commit 002d77e
Show file tree
Hide file tree
Showing 2 changed files with 24 additions and 22 deletions.
2 changes: 1 addition & 1 deletion test/postsubmit-tests-with-pipeline-deployment.sh
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ echo "submitting argo workflow for commit ${PULL_BASE_SHA}..."
ARGO_WORKFLOW=`argo submit ${DIR}/${WORKFLOW_FILE} \
-p image-build-context-gcs-uri="$remote_code_archive_uri" \
-p commit-sha="${PULL_BASE_SHA}" \
-p component-image-prefix="${GCR_IMAGE_BASE_DIR}" \
-p component-image-prefix="${GCR_IMAGE_BASE_DIR}/" \
-p target-image-prefix="${TARGET_IMAGE_BASE_DIR}/" \
-p test-results-gcs-dir="${TEST_RESULTS_GCS_DIR}" \
-p cluster-type="${CLUSTER_TYPE}" \
Expand Down
44 changes: 23 additions & 21 deletions test/sample-test/run_test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -167,20 +167,22 @@ elif [ "$TEST_NAME" == "tfx" ]; then
# Compile samples
cd ${BASE_DIR}/samples/tfx

dsl-compile --py taxi-cab-classification-pipeline.py --output taxi-cab-classification-pipeline.yaml

if [ -n "${DATAFLOW_TFT_IMAGE}" ];then
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tft:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_TFT_IMAGE}|g" taxi-cab-classification-pipeline.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tf-predict:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_PREDICT_IMAGE}|g" taxi-cab-classification-pipeline.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tfdv:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_TFDV_IMAGE}|g" taxi-cab-classification-pipeline.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tfma:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_TFMA_IMAGE}|g" taxi-cab-classification-pipeline.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-kubeflow-tf-trainer:\([a-zA-Z0-9_.-]\)\+|${KUBEFLOW_DNNTRAINER_IMAGE}|g" taxi-cab-classification-pipeline.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-kubeflow-deployer:\([a-zA-Z0-9_.-]\)\+|${KUBEFLOW_DEPLOYER_IMAGE}|g" taxi-cab-classification-pipeline.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-confusion-matrix:\([a-zA-Z0-9_.-]\)\+|${LOCAL_CONFUSIONMATRIX_IMAGE}|g" taxi-cab-classification-pipeline.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-roc:\([a-zA-Z0-9_.-]\)\+|${LOCAL_ROC_IMAGE}|g" taxi-cab-classification-pipeline.py
# Update the image tag in the yaml.
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tft:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_TFT_IMAGE}|g" taxi-cab-classification-pipeline.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tf-predict:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_PREDICT_IMAGE}|g" taxi-cab-classification-pipeline.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tfdv:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_TFDV_IMAGE}|g" taxi-cab-classification-pipeline.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataflow-tfma:\([a-zA-Z0-9_.-]\)\+|${DATAFLOW_TFMA_IMAGE}|g" taxi-cab-classification-pipeline.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-kubeflow-tf-trainer:\([a-zA-Z0-9_.-]\)\+|${KUBEFLOW_DNNTRAINER_IMAGE}|g" taxi-cab-classification-pipeline.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-kubeflow-deployer:\([a-zA-Z0-9_.-]\)\+|${KUBEFLOW_DEPLOYER_IMAGE}|g" taxi-cab-classification-pipeline.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-confusion-matrix:\([a-zA-Z0-9_.-]\)\+|${LOCAL_CONFUSIONMATRIX_IMAGE}|g" taxi-cab-classification-pipeline.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-roc:\([a-zA-Z0-9_.-]\)\+|${LOCAL_ROC_IMAGE}|g" taxi-cab-classification-pipeline.yaml
fi

dsl-compile --py taxi-cab-classification-pipeline.py --output taxi-cab-classification-pipeline.zip
cd "${TEST_DIR}"
python3 run_tfx_test.py --input ${BASE_DIR}/samples/tfx/taxi-cab-classification-pipeline.zip --result $SAMPLE_TFX_TEST_RESULT --output $SAMPLE_TFX_TEST_OUTPUT --namespace ${NAMESPACE}
python3 run_tfx_test.py --input ${BASE_DIR}/samples/tfx/taxi-cab-classification-pipeline.yaml --result $SAMPLE_TFX_TEST_RESULT --output $SAMPLE_TFX_TEST_OUTPUT --namespace ${NAMESPACE}
echo "Copy the test results to GCS ${RESULTS_GCS_DIR}/"
gsutil cp ${SAMPLE_TFX_TEST_RESULT} ${RESULTS_GCS_DIR}/${SAMPLE_TFX_TEST_RESULT}
elif [ "$TEST_NAME" == "sequential" ]; then
Expand Down Expand Up @@ -268,20 +270,20 @@ elif [ "$TEST_NAME" == "xgboost" ]; then
# Compile samples
cd ${BASE_DIR}/samples/xgboost-spark

dsl-compile --py xgboost-training-cm.py --output xgboost-training-cm.yaml

if [ -n "${DATAPROC_CREATE_CLUSTER_IMAGE}" ];then
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-create-cluster:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_CREATE_CLUSTER_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-delete-cluster:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_DELETE_CLUSTER_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-analyze:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_ANALYZE_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-transform:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_TRANSFORM_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-train:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_TRAIN_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-predict:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_PREDICT_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-roc:\([a-zA-Z0-9_.-]\)\+|${LOCAL_ROC_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-confusion-matrix:\([a-zA-Z0-9_.-]\)\+|${LOCAL_CONFUSIONMATRIX_IMAGE}|g" xgboost-training-cm.py
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-create-cluster:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_CREATE_CLUSTER_IMAGE}|g" xgboost-training-cm.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-delete-cluster:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_DELETE_CLUSTER_IMAGE}|g" xgboost-training-cm.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-analyze:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_ANALYZE_IMAGE}|g" xgboost-training-cm.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-transform:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_TRANSFORM_IMAGE}|g" xgboost-training-cm.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-train:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_TRAIN_IMAGE}|g" xgboost-training-cm.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-dataproc-predict:\([a-zA-Z0-9_.-]\)\+|${DATAPROC_PREDICT_IMAGE}|g" xgboost-training-cm.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-confusion-matrix:\([a-zA-Z0-9_.-]\)\+|${LOCAL_CONFUSIONMATRIX_IMAGE}|g" xgboost-training-cm.yaml
sed -i -e "s|gcr.io/ml-pipeline/ml-pipeline-local-roc:\([a-zA-Z0-9_.-]\)\+|${LOCAL_ROC_IMAGE}|g" xgboost-training-cm.yaml
fi
dsl-compile --py xgboost-training-cm.py --output xgboost-training-cm.zip

cd "${TEST_DIR}"
python3 run_xgboost_test.py --input ${BASE_DIR}/samples/xgboost-spark/xgboost-training-cm.zip --result $SAMPLE_XGBOOST_TEST_RESULT --output $SAMPLE_XGBOOST_TEST_OUTPUT --namespace ${NAMESPACE}
python3 run_xgboost_test.py --input ${BASE_DIR}/samples/xgboost-spark/xgboost-training-cm.yaml --result $SAMPLE_XGBOOST_TEST_RESULT --output $SAMPLE_XGBOOST_TEST_OUTPUT --namespace ${NAMESPACE}

echo "Copy the test results to GCS ${RESULTS_GCS_DIR}/"
gsutil cp ${SAMPLE_XGBOOST_TEST_RESULT} ${RESULTS_GCS_DIR}/${SAMPLE_XGBOOST_TEST_RESULT}
Expand Down

0 comments on commit 002d77e

Please sign in to comment.