AI-powered NFL game predictions combining machine learning models with gematria analysis. Built with React Native, Node.js, Python, and multiple ML models.
- Multi-Model ML Predictions - Ensemble of Random Forest, XGBoost, and Neural Networks
- Gematria Analysis - Numerological insights using multiple cipher systems
- Confidence Scoring - Transparent confidence levels for each prediction
- Game Analysis - Detailed breakdowns with key factors
- Subscription Tiers - Free, Starter ($9.99), Premium ($19.99), Pro ($49.99)
- Prediction History - Track your prediction accuracy over time
- Statistics Dashboard - Detailed performance metrics
- Favorite Teams - Personalized predictions for your teams
- Profile Management - Edit preferences and settings
- Daily Prediction Limits - Tier-based access control
- Parlay Optimizer - Optimize multi-game bets (Pro tier)
- Historical Trends - Season-long prediction tracking
- API Access - Premium+ programmatic access
- Node.js 18+ and npm
- Python 3.10+ and pip
- Docker and Docker Compose
- PostgreSQL 15+
- MongoDB 7+
- Redis 7+
# Clone repository
git clone https://github.com/yourorg/nfl-predictor.git
cd nfl-predictor
# Install all dependencies
npm run install:all# Start PostgreSQL, MongoDB, Redis with Docker
npm run docker:up
# Or use the batch file on Windows
start-all.batCreate environment files:
Backend (packages/backend/.env):
DATABASE_URL=postgresql://postgres:postgres@localhost:5432/nfl_predictor
MONGODB_URI=mongodb://localhost:27017/nfl_predictor
REDIS_URL=redis://localhost:6379
JWT_SECRET=your-secret-key-change-in-production
ML_SERVICE_URL=http://localhost:5000
STRIPE_SECRET_KEY=sk_test_...ML Service (packages/ml-service/.env):
DATABASE_URL=postgresql://postgres:postgres@localhost:5432/nfl_predictor
REDIS_URL=redis://localhost:6379
DEBUG=truecd packages/backend
node src/scripts/seed-simple.js# Start everything (Windows)
.\start-all.bat
# Or start individually:
npm run dev:backend # Backend API (port 4100)
npm run dev:ml # ML Service (port 5000)
npm run dev:mobile # Mobile App (port 8100)- Mobile Web: http://localhost:8100
- Backend API: http://localhost:4100
- ML Service: http://localhost:5000
- API Docs: http://localhost:4100/api
Default Login:
- Email:
test@nflpredictor.com - Password:
password123
nfl-predictor/
├── packages/
│ ├── backend/ # Node.js/Express API
│ │ ├── src/
│ │ │ ├── controllers/ # Request handlers
│ │ │ ├── middleware/ # Auth, validation
│ │ │ ├── routes/ # API endpoints
│ │ │ ├── services/ # Business logic
│ │ │ ├── scripts/ # Seed, migrations
│ │ │ └── server.js # Entry point
│ │ └── package.json
│ │
│ ├── ml-service/ # Python/FastAPI ML
│ │ ├── api/ # API routes
│ │ ├── models/ # Trained models
│ │ ├── services/ # ML logic
│ │ ├── training/ # Training scripts
│ │ └── app.py # Entry point
│ │
│ └── mobile/ # React Native/Expo
│ ├── src/
│ │ ├── components/ # Reusable components
│ │ ├── navigation/ # App navigation
│ │ ├── screens/ # App screens
│ │ ├── services/ # API client
│ │ ├── store/ # Redux store
│ │ └── theme/ # Styling
│ └── App.js
│
├── docker-compose.yml # Local development
├── start-all.bat # Windows startup
├── stop-all.bat # Windows shutdown
├── DEPLOYMENT_GUIDE.md # Production deployment
└── README.md # This file
Frontend (Mobile)
- React Native + Expo
- Redux Toolkit (state management)
- React Navigation
- React Native Paper (UI components)
- Axios (API client)
Backend (API)
- Node.js + Express
- PostgreSQL (main database)
- MongoDB (gematria storage)
- Redis (caching)
- Stripe (payments)
- JWT (authentication)
ML Service
- Python + FastAPI
- scikit-learn (Random Forest)
- XGBoost (gradient boosting)
- TensorFlow (neural networks)
- Pandas/NumPy (data processing)
Mobile App → Backend API → ML Service → PostgreSQL/MongoDB
↓ ↓
Redis Cache Redis Cache
↓
Stripe (Payments)
See DEPLOYMENT_GUIDE.md for comprehensive production deployment instructions.
This project is licensed under the MIT License.
- Documentation: See QUICKSTART.md and DEPLOYMENT_GUIDE.md
- Issues: Create an issue in this repository
- Email: support@nflpredictor.com
Built with ❤️ for NFL fans and data enthusiasts