AUC metrics example
Dataset Card on HuggingFace. https://huggingface.co/datasets/guynich/librispeech_asr_test_vad
Model: Silero VAD https://github.com/snakers4/silero-vad
This repo computes AUC metrics for the test dataset with Silero VAD model.
This section describes installation for the working test example in this repo.
The first step is to clone this repo.
cd
git clone git@github.com:guynich/vad_eval_curves.gitThe main script has dependencies. For these steps I used Ubuntu 22.04 and
Python venv virtual environment. The script plots require tkinter.
sudo apt install -y python3.10-venv
sudo apt-get install python3-tk
cd
python3 -m venv venv_vad_eval_curves
source ./venv_vad_eval_curves/bin/activate
cd vad_eval_curves
python3 -m pip install --upgrade pip
python3 -m pip install -r requirements.txtCoded with help from ChatGPT and Copilot.
cd
source ./venv_vad_eval_curves/bin/activate
cd vad_eval_curves
python3 main.pySpeech features marked as low confidence are excluded in the following plot. See Dataset Card for discussion.
Speech features marked as low confidence are excluded in the following plot. See Dataset Card for discussion.
Overall results:
{'test.clean': AUCMetrics(roc_auc=np.float64(0.9749640109150584),
pr_auc=np.float64(0.9916534112871564)),
'test.clean_confidence': AUCMetrics(roc_auc=np.float64(0.9922608881991464),
pr_auc=np.float64(0.998258606740065)),
'test.clean_confidence_count': 565340,
'test.clean_count': 606609,
'test.other': AUCMetrics(roc_auc=np.float64(0.9690341904686337),
pr_auc=np.float64(0.9856188107560578)),
'test.other_confidence': AUCMetrics(roc_auc=np.float64(0.9914300825284824),
pr_auc=np.float64(0.9971949352151593)),
'test.other_confidence_count': 555324,
'test.other_count': 599505}
test.clean has 5.39 hours of active speech with 93.20% labelled confidence 1
test.other has 5.33 hours of active speech with 92.63% labelled confidence 1



