Skip to content

guome/ml-destseg

 
 

Repository files navigation

DeSTSeg

Official PyTorch implementation of DeSTSeg - CVPR 2023

Datasets

We use the MVTec AD dataset for experiments. To simulate anomalous image, the Describable Textures Dataset (DTD) is also adopted in our work. Users can run the download_dataset.sh script to download them directly.

./scripts/download_dataset.sh

Installation

Please install the dependency packages using the following command by pip:

pip install -r requirements.txt

Training and Testing

To get started, users can run the following command to train the model on all categories of MVTec AD dataset:

python train.py --gpu_id 0 --num_workers 16

Users can also customize some default training parameters by resetting arguments like --bs, --lr_DeST, --lr_res, --lr_seghead, --steps, --DeST_steps, --eval_per_steps, --log_per_steps, --gamma and --T.

To specify the training categories and the corresponding data augmentation strategies, please add the argument --custom_training_category and then add the categories after the arguments --no_rotation_category, --slight_rotation_category and --rotation_category. For example, to train the screw category and the tile category with no data augmentation strategy, just run the following command:

python train.py --gpu_id 0 --num_workers 16 --custom_training_category --no_rotation_category screw tile

To test the performance of the model, users can run the following command:

python eval.py --gpu_id 0 --num_workers 16

Pretrained Checkpoints

Download pretrained checkpoints here and put the checkpoints under <project_dir>/saved_model/.

Citation

@inproceedings{zhang2023destseg,
  title={DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection},
  author={Zhang, Xuan and Li, Shiyu and Li, Xi and Huang, Ping and Shan, Jiulong and Chen, Ting},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3914--3923},
  year={2023}
}

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.0%
  • Shell 1.0%